Antrag/first_slides/2023-10-27_microwave_neg_noneg.tex

184 lines
6.9 KiB
TeX
Raw Normal View History

2023-12-03 20:26:28 +00:00
\documentclass[10pt, aspectratio=169]{beamer}
% \usepackage{beamerthememaxiv}
\usepackage[utf8]{inputenc}
\usepackage{babel}
\usepackage{fontenc}
\usepackage{graphicx}
\usepackage{tikz}
\usepackage{animate}
\usetikzlibrary{arrows,shapes,positioning,decorations.pathreplacing,calc}
\newcommand{\imagexyw}[5][0]{
\begin{tikzpicture}[remember picture,overlay]
\node[anchor=north west,inner sep=0pt, rotate=#1] at ($(current page.north west)+(#2,-#3)$) {
\includegraphics[width=#4]{#5}
};
\end{tikzpicture}
}
\newcommand{\imagexywcenter}[5][0]{
\begin{tikzpicture}[remember picture,overlay]
\node[anchor=center,inner sep=0pt, rotate=#1] at ($(current page.north west)+(#2,-#3)$) {
\includegraphics[width=#4]{#5}
};
\end{tikzpicture}
}
\newcommand{\textxy}[4][0]{
\begin{tikzpicture}[remember picture,overlay]
\node[anchor=north west,inner sep=0pt, rotate=#1] at ($(current page.north west)+(#2,-#3)$) {
#4
};
\end{tikzpicture}
}
\date{\today}
\title[Proposal]{\Large{Proposal for young research group}}
\author[Miriam Brosi ]{Miriam Brosi}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}{Status quo}%{Ausgangslage}
\begin{itemize}
\item radio therapy is an important tool in cancer therapy
\item continuous development towards improved tolerability and increase of the therapeutic window
\item two promising developments in recent years:
\begin{itemize}
\item encouraging results with very short, high dose beams (FLASH RT)
\item recent further development of spatially fractionated RT towards Microbeam Radiation Therapy (MRT)
\end{itemize}
\item both show improved sparing of healthy tissue and reduction of secondary cancer also increasingly important due to increase in overall life expectancy
\item both are dependent on the use of particle accelerator facilities
\begin{itemize}
\item for FLASH: to achieve the required intensity in short pulses, e.g. linear accelerators for electron RT
\item for MRT: in case of x-ray beams, a high brilliant synchrotron light sources are required to provide sufficiently parallel propagating micro beams
\end{itemize}
\item very high requirements on stability and metrology of the used beams
\end{itemize}
% 1. Stand der Forschung und eigene Vorarbeiten
% Legen Sie bei Neuanträgen den Stand der Forschung bitte knapp und präzise in seiner
% unmittelbaren Beziehung zum konkreten Vorhaben dar. In dieser Darstellung sollte deutlich werden, wo Sie Ihre eigenen Arbeiten eingeordnet sehen und zu welchen der anstehenden Fragen Sie einen eigenen, neuen und weiterführenden Beitrag leisten wollen.
% Der aktuelle Stand der eigenen Vorarbeiten ist zu benennen. Die Darstellung muss ohne Hinzuziehen weiterer Literatur verständlich sein.
% Bei Fortsetzungsanträgen berichten Sie bitte über Ihre bisherige Arbeit. Auch dieser Bericht muss ohne Hinzuziehen weiterer Literatur verständlich sein.
\end{frame}
\begin{frame}{Motivation for the research group}
The present advances in accelerator based RT, like FLASH RT or micro beam RT,
lead to operation parameters of the used accelerators that can not anymore be described by simple linear optics and beam dynamics. Instead, due to the development towards higher intensity combined with shorter pulse lengths and transverse modulations, the consideration of nonlinear and complex optics as well as beam dynamics influenced by collective effects becomes necessary.\\
\vspace{0.5cm}
Helping to bridging this gap between accelerator science and medical physics from the accelerator side is an important step and will help in paving the way towards the application of...
% aims to greatly improve the applicability of these RT methods in the future.
\end{frame}
% \begin{frame}{Ziele und Arbeitsprogramm}
% % 2.1 Voraussichtliche Gesamtdauer des Projekts
% % 2.2 Ziele
% % 2.3 Arbeitsprogramm inkl. vorgesehener Untersuchungsmethoden
% % 2.4 Umgang mit Forschungsdaten
% % 2.5 Relevanz von Geschlecht und/oder Vielfältigkeit
% % 3. Projekt- und themenbezogenes Literaturverzeichnis
% \end{frame}
\begin{frame}{Goals}
\begin{itemize}
\item improve metrology by improving understanding of dynamic in short and/or spatially structured radiation therapy beams
\item based on existing simulations for beam dynamics and beam-matter interaction provide simulations of the dynamics of RT beams start to end, from inside the accelerator through the air into the target
\item experimental studies to iteratively check and improve the simulations
\item MORE FROM TXT
\end{itemize}
\end{frame}
\begin{frame}{Existing infrastructure and knowledge (1)}
Environment:
\begin{itemize}
\item ATP
\item HEIKA
\item new KIT Center Health Technologies
\item possible Cluster of Excellence AccelerateRT
\end{itemize}
Accelerators:
\begin{itemize}
\item FLUTE electron linear accelerator as electron source up to 40MeV and ultra short pulses down to femtoseconds
\begin{itemize}
\item virtual diagnostic, spatial light modulator, ...
\end{itemize}
\item KARA storage ring as synchrotron light source for x-ray (and also THz ?)
\begin{itemize}
\item extensive diagnostics
\end{itemize}
\item in the planing, CSTART innovative non-equilibrium storage ring will provide the possibility to study dynamics of changing pulse lengths
\item laser based source also coming
\end{itemize}
\end{frame}
\begin{frame}{Existing infrastructure and knowledge (2)}
Me:
\begin{itemize}
\item experience in longitudinal as well as transverse collective effects and instabilities influencing the electron bunch shape in all dimensions....over all investigating phenomena occurring under extreme operation modes, e.g. high charge, small transverse bunch-size, short bunch-length, sub-structures
\item on rings but focus on single bunch effects transferrable to linac..
\item simulations in non-linear optics and beam dynamics, collective effects
\item experimental studies...
\item diagnostics, used electron-beam based as well as synchrotron-radiation based and improved and developed further diagnostic methods ...
\item Much data analysis...
\end{itemize}
\end{frame}
\begin{frame}{Plan}
\begin{itemize}
\item start with simulations on the 3D charge distribution expected at the exit of the linear accelerator
\item followed by simulation of the beam dynamics for this charge distribution on its trajectory to the target
\begin{itemize}
\item based on existing simulation tools and models
\item based on existing beam-matter interaction descriptions
\end{itemize}
\item in parallel experimental studies of the 3D charge distribution at the accelerator exit based on starting distribution
\item experimental studies of the propagation of 3D charge distribution through air and/or water
\end{itemize}
\end{frame}
%
% \begin{frame}[t]{Simulated energy spread - 2nd fill}
% %
% % \vspace{-0.45cm}
% % geometric impedance + resistive wall (with and without NEG)
% \imagexywcenter{3.47}{3.5}{0.45\textwidth}{"plots/2nd_fill/energy_spread_over_current_reduced.png"}
%
% \textxy{9}{5.5}{\parbox{1\textwidth}{imag}}
%
% \end{frame}
\end{document}