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We present a Monte Carlo method implementation in the code ELEGANT for simulating Touschek

scattering effects in a linac beam. The local scattering rate and the distribution of scattered electrons can

be obtained from the code either for a Gaussian-distributed beam or for a general beam whose distribution

function is given. In addition, scattered electrons can be tracked through the beam line and the local beam-

loss rate and beam halo information recorded.
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I. INTRODUCTION

Touschek scattering results from a Coulomb collision of
two relativistic electrons in a particle beam, producing an
instantaneous change in particle energy. Because of rela-
tivistic effects, the amount of momentum transferred from
the transverse to the longitudinal plane in the rest frame is
increased by the Lorentz factor � in the lab frame. If the
resulting energy deviation is outside the radio-frequency
acceptance, or the resulting closed orbit or betatron oscil-
lation exceeds dynamic or physical aperture limitations,
the electron is lost.

The Touschek effect was first found and studied experi-
mentally in the low-energy electron storage ring ADA [1]
and several theoretical investigations of the effect have
been made [2,3]. It is one of the most important beam
lifetime limiting effects in state-of-the-art low-emittance
electron storage rings.

Particle loss due to Touschek scattering has been largely
ignored for single-pass accelerators (e.g., linacs and trans-
port lines) in the past. In such systems, the beam only
passes through once and the product of the transit time
and Touschek scattering rate is generally very small.
However, this thinking has changed given the recent inter-
est in light sources based on energy recovery linacs (ERLs)
[4]. These proposed sources feature an intense electron
bunch with ultralow transverse emittance and a very short
bunch length, which combine to cause a much higher
Touschek scattering rate. This, coupled with the high
bunch repetition rate that is required to provide high aver-
age brightness, means that the total particle loss rate is no
longer something we can ignore.

This is a concern for a possible ERL upgrade of the
Advanced Photon Source (APS), since the existing radia-
tion shielding is not designed for high continuous loss rates
[5]. A preliminary theoretical analysis has been performed
previously using Piwinski’s formula [6]. To obtain detailed
information about the scattered particle distribution and

determine particle loss rates and positions, we developed a
Monte Carlo simulation of Touschek scattering as part of
the code ELEGANT [7].
In this paper, we start by reviewing the theory of the

Touschek effect, then describe the method used for
Monte Carlo simulation. This method is applied to an
example lattice [8] and the calculated Touschek scattering
rates for a Gaussian-distributed beam are compared with
Piwinski’s formula results. To make our simulation more
general, this method is then extended to allow a general
beam distribution. The calculation of beam-loss rate and
location is explained with an emphasis on efficient simu-
lation. Finally, we present an application of this method to
a proposed APS-ERL lattice design.

II. THEORY DESCRIPTION

Before describing the simulation technique, we begin
with a review of the general theory of Touschek scattering.
The theory involves quantities in both the laboratory coor-
dinate system and the center-of-mass (c.m.) systems. For
clarity, we use an asterisk ( � ) to denote all quantities in the
c.m. system. Quantities without this symbol refer to the
laboratory coordinate system.
In the c.m. system, the probability of one of the two

interacting electrons being scattered into a solid angle d��
is given by the differential Møller cross section [9],

d��

d�� ð��;��Þ ¼ r2e
4��2

��
1þ 1

��2

�
2 4� 3sin2��

sin4��

þ 4

sin2�� þ 1

�
; (1)

where re is the classical electron radius; �� and �� are the
relative energy and velocity of the scattered electron in the
c.m. system, respectively; �� is the angle between the
momentum before and after scattering; and d�� ¼
sin��d��d��. Figure 1 illustrates the process. We chose
the coordinate system with x� axis collinear with the
c.m. momentum vectors of the incident particles, and z�
the direction of Lorentz transformation.*xiaoam@aps.anl.gov

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 13, 074201 (2010)

1098-4402=10=13(7)=074201(10) 074201-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevSTAB.13.074201
miriam




The total scattering rate R is given by the integral over
all possible scattering angles and over all electrons in the
bunch. In the c.m. system,

R� ¼ 2
Z

jv�j���ð ~x�1Þ��ð ~x�2Þ�dV�; (2)

where v� is the scattered electrons’ velocity, ~x� ¼
ðx�; y�; z�; p�

x; p
�
y; p

�
zÞ, �ð ~x�i Þ� is the electron phase-space

density, dV� ¼ dx�dy�dz�dp�
x1dp

�
y1dp

�
z1dp

�
x2dp

�
y2dp

�
z2,

and �� is the total Møller cross section, which results
from the integral of the differential cross section over the
solid angle d�� with �� 2 ð0; �2�, �� 2 ½0; 2��:

�� ¼
Z 2�

0

Z �=2

0

d��

d�� sin��d��d��: (3)

The reason for restricting the integral to �� 2 ð0; �2� is
that, if one electron is scattered into the region 0<�� �
�
2 , then the other is scattered into the region �

2 � �� <�.

The factor ‘‘2’’ in Eq. (2) includes both regions.
Transforming to the laboratory coordinate system gives

jvj� ¼ jv�j
�

��

�
(4)

and

R ¼ 2
Z

jvj��ð ~x1Þ�ð ~x2ÞdV; (5)

with

dV ¼ dx�dy�d�zdx
0
�1dx

0
�2dy

0
�1dy

0
�2d�p1d�p2: (6)

Piwinski [3] made a detailed evaluation of Eq. (5) for a
Gaussian-distributed bunch and derived a general formula
[Equation (41) in [3] ] for the Touschek lifetime. We will
use the symbol RP to denote the Touschek scattering rate
from Piwinski’s formula.

III. MONTE CARLO SIMULATION

The integral of Eq. (5) can be computed using the
Monte Carlo integration technique with N uniformly dis-
tributed random points in the n-dimensional volume V,
e.g.,

Z
V
fð ~xÞd~x � V

N

XN
i¼1

fð ~xiÞ: (7)

Thus, the average scattering rate for particles that result in

energy deviation j�j ¼ j �PP0
j greater than a nominal value

�m is given by

RMCðj�j> �mÞ ¼ V

N

XM
i¼1

�
v�0

�2

d��0

d��0 sin�
�0�ð ~x1Þ�ð ~x2Þ

�
i

¼ XM
i¼1

ri; (8)

whereN ¼ 2� Ne andNe is the total number of simulated
scattering events (each event involves two particles); V is
the total volume in ðx; y; z; x01; y01; dp1; x

0
2; y

0
2; dp2;�

�0;
��0Þ, the 11-dimensional space from which the events are
selected; M is the total number of particles with energy
deviation j�j> �m (one scattering event may generate one
or two electrons with j�j> �m, and they are counted
individually), when �m equals the machine’s momentum
acceptance �a, this equation gives the beam-loss rate; ri is
the local scattering rate represented by each simulated
scattered particles. When N is large enough, the
Monte Carlo integration converges to the analytical
integral.
To use Monte Carlo integration, we need to generate a

series of random scattering events. Each event involves a
pair of scattering particles. The selection of the scattering
particles, which we implemented in ELEGANT, is modified
from Khan’s work for BESSY II [10,11]. In ELEGANT,
sample particles are selected from normalized phase space
instead of from real phase space. In this way, we separated
the particle’s transverse motions into two parts, namely, a
betatron oscillation and a dispersive orbit. As a result, the
particle’s density �ð ~xÞ in Eq. (8) can be written in a simple
and standard format, making it easy to calculate correctly.
In our method, the dispersion correction is done afterwards
and the agreement between Piwinski’s formula and our
simulation results are good for all of the optical function
regions (see Fig. 6). The original method combined the two
parts of the motion when calculating �ð ~xÞ and gave larger
simulation errors in dispersive regions. In ELEGANT, we
also expanded the method to the case of general particle
distributions rather than restricting it to a Gaussian beam.
These two cases are discussed separately and in detail in
below.

FIG. 1. (Color) Electron momenta before (magenta) and after
(blue) scattering.
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A. Monte Carlo simulation for a Gaussian-distributed
bunch

For a Gaussian-distributed bunch, nine uniformly dis-
tributed random numbers are generated in the normalized
phase-space range from ½�r

ffiffiffi
"

p
; r

ffiffiffi
"

p �, where r (rx, ry, or

rz) are factors supplied by the user, and " ("x, "y, or "z) are

the beam emittances. These random numbers are assigned
as: ðX1; Y1; X

0
1; Y

0
1Þ the normalized transverse coordinates

of particle 1; ðX0
2; Y

0
2Þ, the normalized transverse slopes of

particle 2; (s1) the longitudinal coordinate of particle 1;

and ð�p1

p0
; �p2

p0
Þ the fractional momentum deviations of par-

ticle 1 and 2. The three spatial coordinates for particle 2 are
identical to those for particle 1, since the particles are
colliding, so that x2 ¼ x1 ¼ x, y2 ¼ y1 ¼ y, and s2 ¼
s1 ¼ s. Converting these coordinates to real phase space
and including dispersion effect, particle 1 has

z1 ¼
ffiffiffiffiffiffi
�z

p
Z1 þ �p1

p0

Dz; z01 ¼
Z0
1 � �zZ1ffiffiffiffiffiffi

�z

p þ �p1

p0

D0
z;

(9)

where zðZÞ represents xðXÞ or yðYÞ. For particle 2, we have

Z2 ¼
�
z1 ��p2

p0

Dz

�� ffiffiffiffiffiffi
�z

p
;

z02 ¼
Z0
2 � �zZ2ffiffiffiffiffiffi

�z

p þ �p2

p0

D0
z:

(10)

We now have a complete set of coordinates
ðx; y; s; x01; y01;�p1; x

0
2; y

0
2;�p2Þ for both particles before

scattering. The particle densities �ð ~x1Þ and �ð ~x2Þ in
Eq. (8) can be easily calculated from the Gaussian func-
tion. The normalized phase-space volume is simply

Vn ¼ ð2rx ffiffiffiffiffi
"x

p Þ3ð2ry ffiffiffiffiffi
"y

p Þ3ð2rz ffiffiffiffiffi
"z

p Þ3: (11)

Transforming to real coordinates we have

Vp ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x�y�z

p Vn: (12)

To simulate the scattering process, another two random
numbers are generated and assigned to �� and ��. The
scattered particle coordinates are obtained as shown in
Fig. 1, and the volume corresponding to the range of
scattering angles is �2. The total 11-dimensional volume
is V ¼ �2Vp. After choosing all the coordinates, the asso-

ciated scattering rate in Eq. (8) for the event is calculated
and stored for future use.

B. Monte Carlo simulation for a general bunch

A linac bunch is generally not Gaussian distributed.
Figure 2 shows aspects of the particle distribution profile
from an optimized high-brightness injector simulation for a
possible APS-ERL upgrade [12]. Clearly, in this case,
assuming a Gaussian-distributed bunch is a poor choice.
On the other hand, modern computational capabilities
make tracking billions of particles possible [13], which
means that a detailed beam distribution function can be
obtained. These facts push us to expand our Monte Carlo
simulation to a general case—an arbitrarily distributed
bunch.
To do this, first we need to know the particle distribution

function at the location where we perform Monte Carlo
simulation. In ELEGANT, this is done by tracking simulation
particles through the beam line and making a multidimen-
sional histogram of the particle distribution at the locations
where scattering will be modeled. The number of bins in
each dimension ðnx; ny; ns; nx0 ; ny0 ; n�pÞ is provided by the

user.

(a) horizontal (b) longitudinal

FIG. 2. Particle distribution from optimized high-brightness injector simulation for a possible APS-ERL upgrade [12].
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To be exact, a 6D histogram should be used to describe
the particle distribution. However, this requires a very large
number of particles in order to produce a detailed histo-
gram. For example, to have 11 bins in each dimension, the
total number of bins is 116 � 2� 106. The total number of
particles needs to be significantly larger than this value.
Another concern is that when interpolating a 6D table one
must use the nearby 26 ¼ 64 grid point values. This is
computationally expensive and may not always be neces-
sary. To allow users to optimize the computations,
ELEGANT supports three types of histogram input: full 6D

histograms, or dual 4D (transverse) and 2D (longitudinal)
histograms, or 2D histograms in each plane. In this paper,
we use 4Dþ 2D histograms to demonstrate our method.
Figure 3 shows the histogram of a simulated electron bunch
from a gun [12] which has 500 000 particles. The index in
the histogram is a nD subindex counter where each sub-
index is the bin index of the corresponding dimension. For
example, the 4D counter is ½nxjnx0 jnyjny0 �, where nx is the
bin index of x and will take the value ½0; NBxÞ (NBx is the
total number of bins in the x direction), and same for nx0 ,
ny, and ny0 .

As described above, nine random numbers are generated
within the ranges given by the histogram and used as the
coordinates of the scattered particles’ coordinates, ~x1 and
~x2. The values of �ð ~x1Þ and �ð ~x2Þ in Eq. (8) are computed
from linear interpolation of the histogram values at the
nearest grid points. The other aspects of the simulation are
the same as the Gaussian-distributed bunch case.

C. Selection of particles for tracking study

Whether we use the Gaussian distribution or a distribu-
tion determined from tracking, we generate the same basic
data, namely, the coordinates of the scattering particles and

the particle density at their phase-space locations. Once we
have these particles, the momenta are transformed to the
c.m. system. The scattering angles ��0 and ��0 are, re-
spectively, selected randomly within the regions ð0; �2� and
½0; 2�� with uniform distributions. The momenta are ro-
tated to the new position given by ��0 and ��0, and the
correspondingMøller cross section is calculated. These are
the momenta after scattering and are transformed back to
the laboratory coordinate system and become ðp0

1; p
0
2Þ. The

associated scattering probability rate ri is also calculated,
using the local density values and the cross section.
At this point, we have the coordinates of the particles in

the lab frame after scattering. If jp0
1=p0 � 1j or jp0

2=p0 �
1j is larger than the quantity �m, which is specified by the
user, then the particle and its associated scattering rate are
saved for further use. Thus, the user-defined parameter �m

specifies a minimum momentum deviation, below which
losses are not expected in tracking. By repeating this
process many times, the Monte Carlo integration of RMC

in Eq. (8) will reach a stable result and give an estimate of
the scattering rate beyond the momentum deviation �m.
Although ultimately we will use tracking to determine

whether or not scattered particles are lost, we can also
simply look at the scattering rate at any location as a
function of the cutoff value �m. This allows us to examine
the convergence of Eq. (8). To do this we simulated up to
N ¼ 4� 107 random events and computed the Touschek
scattering rate RMC for �m ¼ 0:001, 0.01, 0.03, and 0.05.
Figure 4 shows RMC (normalized to 1 for easy comparison)
vs N andM at different �m. It is clear that results converge
for N > 2� 107. For fixed N,M varies in a large range for
different �m. When tracking, we normally want to knowM
in advance, so we chose M ¼ 5� 106 as the default in
ELEGANT. This number is only insufficient for small �m,

which can of course be changed by the user.

(a) longitudinal (2D) (b) transverse (4D)

FIG. 3. Histogram of a simulated bunch.
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D. Comparison of Monte Carlo simulation to Piwinski’s
formula

To verify our scattering rate simulation, we applied both
Piwinski’s formula and Monte Carlo simulation to a turn-

around arc (TAA) cell of the APS-ERL lattice [8]. The
optical functions of the TAA are illustrated in Fig. 5.
Figure 6 shows the local scattering rate calculated for

�m ¼ 0:01 for this 7 GeV beam, which has 77 pC=bunch,
normalized transverse emittance 0:3 �m in both planes,
rms bunch length 0.6 mm, rms energy spread 700 keV, and
a repetition rate of 1.3 GHz. We see that the agreement is
excellent.
Next, we computed the scattering rate as a function of

beam energy and �m. As Fig. 7 shows, the agreement is
again excellent.
The comparison of calculated Touschek lifetime with

experimental data has been made by many others [14–17].
Since our simulation code agrees well with the established
Piwinski method, it should give the same level of agree-
ment with experiment as in these papers.

ELEGANT also provides output of the simulated bunch

particle distribution and the scattered particle distribution
(histogram). These are shown in Figs. 8 and 9. The user can

FIG. 6. (Color) Local Touschek scattering rate (1=s): Piwinski
formula (black) and Monte Carlo simulation (red).

FIG. 5. (Color) Lattice used for simulation.

(a) (b)

FIG. 4. (Color) Scattering rate (normalized to 1) vs number of simulated events N (a) and number of satisfied scattering particlesM (b)
at different �m.

FIG. 7. (Color) The Touschek scattering rate (1=s) as a function
of beam energy (x axis) and momentum acceptance �m (legend):
Piwinski formula (black) and Monte Carlo simulation (red).
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check their simulation convergence by viewing these fig-
ures (the smoother the better).

IV. SIMULATION OF BEAM-LOSS RATE AND
LOCATION

Having validated our scattering rate simulation using
Piwinski’s formula, we are in a position to simulate beam
loss due to Touschek scattering. The procedure is per-
formed in several steps and illustrated in Fig. 10.

We used a lumped-element method to simulate beam
loss due to Touschek scattering. The beam line under
study is first divided into many small sections by inserting
a special element TSCATTER at many locations. This
is easily done using the ELEGANT command
insertelements. The total number and locations
where one should insert TSCATTER elements depends
on the rapidity with which the energy and optical functions
vary. To ensure reliable results, these variations should be
small between successive scattering elements. The scat-
tered particle distribution is obtained at each TSCATTER
element using the Monte Carlo method described above.

The scattered particles are started at the location of the
TSCATTER element. The scattering rate represented by
each scattered particle is scaled with the total scattering
rate integrated over the corresponding section (i.e., the
section of the beam line between the current and previous
TSCATTER element), see Eq. (13).
We wish to track scattered particles with � > �m, where

(�m) should be smaller than the local momentum accep-
tance �a, in order to determine where they are lost. Unlike
in storage rings, �a varies over a large range in linacs.
Figure 11 shows the local momentum aperture determined
by ELEGANT for the APS-ERL lattice. Similar results were
reported for the Cornell ERL design [18]. In order to
efficiently study beam-loss behavior from Touschek scat-
tering, the local momentum aperture �a;i at each

TSCATTER (i is the index of TSCATTER elements)
is first calculated by using the momentumaperture
command, then results are scaled back to a slightly smaller
value �m;i ¼ a0�a;i, where the user-controlled parameter

a0 (a0 < 1 to ensure that we do not miss a possible lost
particle) defaults to 0.85. The correct value of a0 depends
on how momentum acceptance varies for particles with

FIG. 8. Simulated bunch particle distribution.
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nonzero initial position and angle. Since it varies depend-
ing on the particular problem, it should be set with caution.

If the simulation is desired for a non-Gaussian-
distributed bunch, then the particles distribution function

at each TSCATTER needs to be known ahead of the
simulation. This can be done by adding a MHISTOGRAM
element at each TSCATTER position and then track the
primary bunch through the beam line. The local bunch
distribution function (histogram) is recorded at each
MHISTOGRAM, and is used in the later Monte Carlo simu-

FIG. 10. (Color) Procedure of the Touschek-caused beam-loss
simulation.

FIG. 9. Scattered particle distribution.

FIG. 11. Local momentum aperture for a possible APS-ERL
lattice (tracking stopped at E ¼ 189 MV during deceleration).
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lation for generating scattered particles (secondary bunch)
at each TSCATTER location. The reader can obtain more
detailed information on the usage of MHISTOGRAM from
[19].

Although the local scattering rate can be obtained using
Monte Carlo, as we demonstrated above, it would be too
time consuming to get an accurate value along an entire
beam line section using this method. Piwinski’s formula
allows us to quickly determine the total scattering rate over
each section for a Gaussian beam. This is used to weight
the local simulation results at the TSCATTER element.
Each simulated scattered particle having an associated
local scattering rate ri given by Eq. (8) is then assigned
an associated total scattering rate Ri using

Ri ¼ riP
ri

RMC

RP

Z
RP; (13)

where RP and RMC are local Touschek scattering rate from
Piwinski’s formula and Monte Carlo, respectively (for a

Gaussian-distributed bunch, RMC

RP
� 1). The integration is

taken over the upstream section of the beam line.
In this way, the simulated scattered particles originating

at the TSCATTER element accurately represent the scat-
tering rate from the entire upstream section. The beam-loss
rate and location can then be calculated through tracking
those scattered particles through the beam line and record-
ing all lost particles. The total loss rate will be the sum of
Ri for all the particles lost at any location.

V. STRATEGY TO SPEED UP SIMULATION

As we pointed out earlier, to obtain a reliable scattering
rate and a smooth scattered electron distribution, M has to
be a large number (M� 5� 106). In addition, a large
number of beam line sections, Ns, is also required. That
means that we need to track M� Ns electrons, which
requires significant CPU time. This motivated develop-
ment of a strategy to reduce the simulation burden. We
examined the scattering rate that each simulated electron
represents and found, not surprisingly, a large variation.
Some simulated electrons represent highly probable scat-
tering events, while some represent very improbable
events.

To illustrate this, we took the data from our previous
simulation and sorted the simulated electrons in order of
increasing associated scattering rate. Figure 12 illustrates
the accumulation of the scattering rate (

P
ri) vs the num-

ber of simulated electrons (M).
From this plot we can see that about 18% of the simu-

lated electrons represent about 99.9% of the scattering rate,
which means that we may track a small portion of the
simulated electrons and get good beam-loss information.
Figure 13 compares the computed loss rate distributions for
tracking scattered electrons with 95%, 99%, and 100% of
the total scattering rate, respectively. It is evident that the
differences are small and that this strategy can greatly

speed up simulation with little sacrifice of accuracy. In
ELEGANT we use 99% as the default value; that is, by

default we only track the highest-weight particles that
represent 99% of the scattering rate.
Most likely, the particles dropped from tracking are

those with large momentum deviation, which will be lost
very soon after scattering. It may not always be desirable to
ignore these particles. The error in doing so depends on
tracking results. For example, if we track particles repre-
senting 99% of the scattering rate and the losses are 50% of
the total scattering rate, then the total loss is very likely to
be 51%. The relative error by dropping those low weight
particles will be � 1

50 . Hence, it is advisable to choose �m

as close as possible to the momentum aperture (in this case,
most particles will be lost somewhere), and vary the cutoff
level to ensure correct results.

VI. APPLICATION TO APS-ERL DESIGN

APS is exploring a possible ERL upgrade, but we are
concerned about beam-loss issues in the present APS
tunnel. The allowed beam loss in the APS ring is about
170 pA=1100 m [20], i.e., 0:15 pA=m, to be compared to
an average current of 25 to 100 mA.We applied the method
described above to the APS-ERL lattice [8]. The simulated
beam was from an optimized high-brightness injector
simulation [12]: it has the normalized geometric rms emit-
tance of 0:35 �m, 33.5 keV rms energy spread at
12.5 MeV, 0.55 mm rms bunch length, 77 pC charge per
bunch, and a 1.3-GHz repetition rate, giving 100-mA
average current. Figure 14(a) shows the beam-loss rate
from Touschek scattering without sextupole correction in
the TAA section. This is well above what is tolerable.
A sextupole correction along the TAA section was then

added to maximize the local momentum aperture. To do
this, the local momentum aperture is first computed by
tracking particles from each location (e.g., the end of each

FIG. 12. (Color) Integrated scattering rate vs number of simu-
lated electrons. Electrons are sorted with increasing associated
scattering rate.
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beam line element) with increasing positive and negative
momentum deviations, until a loss is seen. We find the
minimum absolute value of the momentum deviation limit
for all starting locations, then maximize this value by

adjusting sextupole families. Figure 14(b) shows that this
optimization significantly reduces the beam-loss rate; the
average loss rate (0:018 pA=m) is well below the desired
value.

(a) (b)

FIG. 14. Simulated loss rate vs position for APS-ERL: (a) without sextupole optimization; (b) with optimized sextupoles (s starts
from the end of electron gun; APS starts at s � 2600 m).

FIG. 13. Simulated loss rate vs position for various values of the scattering rate cutoff (s starts from the end of linac; APS ring starts
at s � 1900 m).
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The user also can obtain beam profile information by
dumping surviving scattered particles using the WATCH
element provided by ELEGANT. In this case, the input �m

should be significantly smaller than the momentum aper-
ture limitation. This information can be used for later
collimator system design [21].

VII. SUMMARY

A Monte Carlo simulation of Touschek scattering for a
single-pass system (linac or transport line) was imple-
mented in ELEGANT. We compared the simulated local
scattering rate with the rate from Piwinski’s formula for a
Gaussian-distributed bunch and found good agreement,
which confirms that our scattering simulation is correct.
We extended the simulation to allow an arbitrarily distrib-
uted bunch. This involves first tracking with a simulated
bunch to create histograms describing the bunch distribu-
tion, then using these histograms to compute the scattering
rates. We also developed a strategy to speed up the tracking
simulation by selecting only those simulated scattered
particles that represent the bulk of the scattering rate.
Application to a proposed APS-ERL lattice shows that
the Touschek scattering effect is serious for such a high-
brightness electron beam. An optimized sextupole correc-
tion must be employed to lower the beam loss to a safe
value.
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