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ABSTRACT

This advanced course on general accelerator physics is the second of the biennial series given
by the CERN Accelerator School and follows on from the first basic course given at Gif-sur-Yvette,
Paris, in 1984 (CERN Yellow Report 85-19). Stress is placed on the mathematical tools of Hamiltonian
mechanics and the Vlasov and Fokker-Planck equations, which are widely used in accelerator theory.
The main topics treated in this present work include: nonlinear resonances, chromaticity, motion in
longitudinal phase space, growth and control of longitudinal and transverse beam emittance, space-
charge effects and polarization. The seminar programme treats some specific accelerator techniques,
devices, projects and future possibilities.
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FOREWORD

The CERN Accelerator School was established in 1983 with the main mission to preserve and dis-
seminate the knowledge accumulated at CERN and elsewhere on particle accelerators and storage rings
of all kinds. This is being achieved by means of a biennial programme of basic and advanced courses
on general accelerator physics, supplemented by topical courses organised jointly with the US
Particle Accelerator School, and specialised courses as needs arise. The basic and advanced courses
together bridge the gap between a science or engineering degree and the level of knowledge appropri-
ate for starting accelerator research work.

In 1984 the first basic course on general accelerator physics was held at Gif-sur-Yvette, Paris
and the proceedings subsequently appeared as CERN Yellow Report 85-19, Volumes I and II. In
September of the following year the first complementary advanced course was held at Oxford and the
present proceedings bring together the lectures and seminars presented there. In alternate future
years these courses will be repeated with some modifications for new material and current develop-
ments. Since this is an advanced course primarily meant for those interested in going deeply into
accelerator theory, a certain stress is placed on the mathematical tools of Hamiltonian mechanics,
the Vlasov equation and the Fokker-Planck equation, which are widely applied in the lectures.

With the publication of these proceedings I should 1ike to take the opportunity to thank, on
behalf of the School, the CERN Directorate and the School's Advisory and Programme Committees for
their continued support and effort. The support of the Department of Nuclear Physics, Oxford, in
organising the course, and the help and sponsorship of the Rutherford Appleton Laboratory are grate-
fully acknowledged. Particular thanks are also due to the lecturers who not only prepared and pre-
sented the different topics but also completed the exacting task of writing their chapters for the
proceedings. I am also very grateful to the many people in the various CERN services who have given
invaluable help in producing these proceedings. Finally, and most important, I would like to thank
the 114 participants in the course who made it all so worthwhile.

This course was both the first of the advanced general accelerator physics courses to be run by
the CERN Accelerator School and the last to be directed by our founder Head, Professor Kjell
Johnsen. Since CAS was formed in 1983, Professor Johnsen has guided us through four courses and one
workshop, and has set the school onto a firm foundation with clear objectives. He now hands over to
Dr. P. Bryant and in the brief eight months before he retires he will take on a new role as Chairman
of an Advisory Panel on new ideas for electron-positron Colliders for CERN as part of Carlo Rubbia's
Working Group on the Scientific and Technological Longterm Future of CERN.
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On behalf of all who have participated in the CAS activities, I should 1ike to extend our thanks
to Professor Johnsen and to convey our best wishes to him for his new work and his retirement.

S. Turner
Head of Administration
CERN Accelerator School



OPENING ADDRESS

Jd. Mulvey
University of Oxford, Department of Nuclear Physics, Oxford, England

First of all of course, a very warm welcome to Oxford. Actually it seems a little chillier
today but those of you who were here yesterday saw that the sun was shining and there is every expec-
tation that it will shine at least once again before you go. I welcome you to Oxford, to this
ancient University. The Queen's College, where you are staying, was founded in the year 1341, not
one of the first colleges, Merton usually claims to be the first foundation about a hundred years
earlier. Perhaps some of you who have had the opportunity of spending a first night in the college
will appreciate the feelings of an American lady who came here with her husband, an eminent geneti-
cist, spending a year here as a visiting professor, and after she left she wrote a book about her ex-
periences, with the title "These ruins are inhabited". However things have moved on. It is general-
1y assumed that the natural period or relaxation time for this University is about 250 years, but it
was not so very long ago that one visitor to the university being shown around, was suddenly struck
with a question which he put to his guide. "Tell me" he said , "the students who live in these
colleges, where do they wash?" The guide had to think for a few moments and then showed the visitor
the pump standing in the quadrangle. When the visitor expressed some surprise that that was the only
such facility the guide was again at a bit of a loss until he realised that there really was not any
problem, as he said, "Sir, the young gentlemen only spend 8 weeks here at a time". After these
calumnies, which I am sure you realise are repeated in front of every conference that visits Oxford,
I should provide you with some further information which may be of assistance.

The first thing that lecturers should notice is that if they put their lecture notes on this
side of the table the fan here will blow them off! You will have registered in the school office so
you know where it is. Well, regrettably, the school office will move. As from this afternoon it
will be at another location in the college which I think is best described to you by saying that we
will put a map on the door of the present office to tell you how to get to the new one. However, one
advantage of the new one is that it has a telephone in it, and if at any time you want somebody to
telephone you to leave a message this is the telephone number. If you want any information about the
college, where to find the gents toilets or the ladies toilets or to find a piano or anything that
you can think of 1like that, please in the first instance ask the porter at the lodge. If he cannot
satisfy you, then come to the office and we will try to solve it. In the wallet that you all have
received, you will find a certain amount of information about restaurants and entertainments in the
town, as well as the school programme. You will note that for the weekend, Saturday and Sunday we
have departed from what I think is normal tradition in not arranging an excursion. Our excuse for
this is the following. There are very many excursions that can be made, you can tour around the
Cotswolds, you can visit ancient castles, you can punt on the river here - if the weather is fine
enough - or you may wish to visit London. With all these possibilities we thought you should choose
your own pleasures. We will, of course, be glad to give you help and advice in making arrangements.

Finally, may I again welcome you to Oxford and wish you all a very enjoyable, and instructive
stay.



LOCAL COORDINATES FOR THE BEAM AND FREQUENTLY USED SYMBOLS

y is used as general transverse
coordinate for both x and z

Local centre
of gyration

Central orbit

s ( Tangential to beam direction )

(MKS units)
gy(s) transverse betatron amplitude function [m] in plane (y,s)
ay(s) - _ 1 dsy
2 ds
_ s ds . .
¢y(s) = £ phase of betatron oscillation
By(s)
Q number of betatron oscillations per revolution in
y transverse plane (y,s)
n(s) = y(s) normalised amplitude of betatron oscillation
B, (s
* d
¢(s) = £ S normalised betatron phase
Qg (s)
yy
p particle momentum [GeV/c ]
D(s) = ¥(s) transverse dispersion or momentum compaction [m](local y
AP/P transverse co-ordinate of an off-axis closed orbit
normalised by the fractional momentum deviation)
€ transverse emittance [n m.rad] (defn. using 2 standard
y deviations half beam width, € = 4o§/By).
p local radius of bending [m]
R average machine radius [m]
t time [s]
I beam current [A]
e electronic charge [A.s]
c velocity of the light [m.s=!]
B ratio of particle velocity to that of light
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Y ratio of total energy of particle to its rest energy
B magnetic induction [T]
E electric field strength [V/m]
Bp magnetic rigidity [T.m]
n= 1 - L revolution frequency spread per unit of momentum spread,
v> y? yt being the value of y at the transition energy
¢ 0g radio frequency phase seen by particle crossing a cavity
and phase seen by synchronous particle
Qg synchrotron oscillation angular frequency [s'l]
Ter Tp classical radii of the electron and proton respect. [m]
' denotes d/ds * denotes d/dt
average value A maximum value

minimum value <> average over distribution || modulus



J.S. Bell
CERN, Geneva, Switzerland.

ABSTRACT
For the bright gift of poetry was his;
And in lone walks and sweetly pensive musings
He would create new worlds and people them
With fond hearts and sweet sounds and sights of Beauty.
He had been gifted, too, with sterner powers.
Even while a child he laid his daring hand
On Science' golden key; and ere the tastes
Or sports of boyhood yet had passed away
0ft would he hold communion with the mind
Of Newton, and with awed enthusiasm learn
The eternal Laws which bind the Universe
And which the Stars obey.
W.R. Hamilton (c. 1830)

1. INTRODUCTION

William Rowan Hamilton (1805-1865) was a mathematician as well as a poet. His first
publications were concerned with geometrical optics. An analogy between geometrical optics
and mechanics led to his distinctive formulation of classical mechanics. For Hamilton the
relation between optics and mechanics was one of analogy only. But in the meantime the
analogy has acquired physical substance with the appearance, around 1925, of 'quantum
mechanics'. It is now thought that the motion of particles is guided, somehow, by associated
waves. And that it is only when the evolution of these waves is well approximated by
geometrical optics, i.e. when wavelengths are small and frequencies high, that classical

mechanics is good.

Consider the evolution of a 'wave packet', i.e. a wave train confined to a small region
of space, but nevertheless containing many (necessarily very short) wavelengths. If the
wavelength is (2w/k), and the corresponding time period (2w/w), the mean position q of the
wave packet moves with the group velocity dw/dk. This is very familiar in the case of a
homogeneous medium constant in time, when w is a function of k only. But in the case of g
and k large, it remains true (for short wave trains) in the case of an inhomogeneous

inconstant medium, when w has to be regarded as depending on position g and time t as well

as on wave number k:

da,
t

= %{ L«g(qw\&.\t). (N
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When w depends on q and t, the mean wave number k is not constant during the propagation. In

analogy with (1), it can be shown that

dk _ _ i
Ih = BOI/(N(C[/,\Q,L). (2)

Defining
b=tk , (9, b t) = h\w(%uk,\‘), (3)

where 2vh is Planck's constant, we have finally

dq,
at

db _ _
a.—é- -aq/\—\ (CV'»\’)?‘C)w

(]

S—PH (a,b,¢) 1

(4)

i.e. Hamilton's equations for classical particle motion; p is called the momentum conjugate

to coordinate q, and H(qg, p, t) is called the Hamiltonian function.
For simplicity we consider explicitly above, and often below, the case of just one
coordinate q. For a particle moving in three dimensions we have actually three coordinates,

9, 9, and q, (and for N particles 3N g's), and corresponding momenta. Equations (4) hold

for each coordinate 9, and momentum P,:

Ao,
L 24, b, ),

At 2 (5)

dbe _
()Tt— = /O%“H(ol/, P, t).

The Hamiltonian for a particle of mass m and charge e moving in an electromagnetic

H = ed? + “f@‘e"&)l'\' met o, (6)

where w(&, t) and 3(3, t) are scalar and vector potentials, corresponding to electric and

field is

magnetic fields:

oy

E? = -—%?($ _2A Eg = vx A . (7

)
o
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One can arrive at (6) just by writing down the simplest Lorentz- and gauge-invariant wave

equation, which defines w(q, k, t), and using (3). One can also check that (6) yields the
familiar equations of motion. From (5)

S (pen) (fGGeAT o

d bu 3¢

Using

(A ;\w _ 2 /3\n + :ii, CA q/MA E)%\\A

—_ (10)

and (8), equation (9) becomes

d _ e _ e A
CA b ( tDM-_G?/\;>

29, ?to\% R A
m(0RAmM DAw
+ezwi'0\t(-5%« M,w)
= eE(9, ) + eé%x@(ﬁ',&), (1

From (8)
wi [[i=4T /e = PocA

(where q = dq/dt). Using this in (11),

JﬂL _,__!!Lji;—-—-——-) = € ig 4+ € ) X E;
o\t( m i

(12)

as required.

Those who would not be bothered with quantum mechanics can simply start from the
observation that with definition (6), equations (5) and (12) are equivalent.



2.  POISSON BRACKETS

The rate of change of any function F(q, p, t) along a dynamical orbit is
dF LA (s Ay  2F o\bn)
at o 20w At ohw At

12}
< (2F 2H _ 9F oH
+ %J (3% el ?‘PWBC\/V\\) (13)

1

t
2F
Tt
[using (5)]. For any two functions F and G we define their

Poisson Bracket:

F 3G 2F 26 — 4
e ) = (F, ¢,

12)

Then (13) becomes

aF 2
T + (F,) H} (15)

When F and G are identical the Poisson bracket (14) vanishes. In particular, (H, H) = 0. So
taking F in (15) to be H,

tﬁté = ?—5—\:& . (16)

In particular, if H does not depend directly on t, (dH/dt = 0), it is unchanged by the

variation of q and p along a dynamical orbit:

dH / dt = o, (17)

The value of H is called the energy, and (17) expresses conservation of energy.

3. STATIONARY AND VARYING ACTION

Consider a finite path in (q, p, t) space -- not necessarily a dynamical orbit (a
solution of Hamilton's equations). We define the corresponding action S to be the integral

along the path,
S ((patw) = g(zv\: Pu d ., —\—\o\t\ , (18)

[Warning: sometimes the name 'action' is used for a quantity which omits the dt

contribution in (18).] We will consider how S changes when the path is changed slightly.
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It is convenient to label the points along the path by a parameter A, which can be
supposed to begin at O and end at 1. Then (q, p, t) are functions of A, and considering
different paths means considering different functions of A. The expression (18) can be
written

\
S; = S a \ ( k; éﬁk - H Q&E. ) (19)
o aA A 3
where for simplicity we omit the summation over n.

Wwhen the path is varied slightly, the increment in S is

8¢S = go\)\ (gb"%\_ S\_\O\_k + b AM_,\_*O‘&\)

AN aN AN
S PATCLP | A d
= ax[% Moyt dv o, ad _( s
S \J‘M TR LSy bsq -Hse|| (20)
Remember that H is a function of (q, p, t):
L= i oH
SH = ?%81 + St +®P%b )
Using this,
dq  oH dt _Cx_\z-""“dt)
%G = gd}\ {%P(_}\" St "}\\)"'% ( AN 29, 0A

n

gdt{%\a(@-’é_ﬂ\ N %%(Q%_%\%}v

- A= 1
+ %t (‘.)‘-\i_.?_"‘) + \“P%%‘ng } (21)

£ ot A= o

The coefficients of &p, dq, 6t, are just the expressions required by Hamilton's equations,
(4) and (16), to vanish. And so we have

Hamilton's principle of varving action: if, and only if,

/\
2S = [\D%CI"H%t]O (22)

for any small variation from a given path, is that path a dynamical orbit (i.e. a solution
of Hamilton's equations).
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If we consider only variations with 6p = &q = 6t = O at the ends, we have from Eq.
(21):

Hamilton's principle of stationary action: if, and only if,

S = o© (23)

for any small variation of path in which q, p, and t are held fixed at the end-points, is

the given path a dynamical orbit.

Requiring (23) for fixed end-points requires Hamilton's equations everywhere in
between, because 5q, &p, and 5t can be arbitrarily varied arbitrarily close to the end-
points. It is striking that the restricted requirement, (23), for fixed end-points, by

requiring Hamilton's equations requires (22) for unfixed end-points.

4. POINCARE INVARIANT

Consider a family of dynamical orbits

q/()\’\k‘/u’) ° "w

- . - (24)
P (A, w1, )

E(N, w, v, ) .
For fixed u, v, ..., as the parameter A varies from 0 to 1 these functions trace out a
solution of Hamilton's equations. The parameters u, v, ... serve to distinguish different

members of the family of solutions coﬁsidered. For each member we have the action (18):

S(U, v, - o ~): S(PA%\ Holt) . (25)

The variation formula (22) is valid for variation from a dynamical orbit to any nearby path,

and so in particular for variation to a nearby dynamical orbit
S = (bS%— HSt\)\:1" (b%%— H%\:)/\=o . (26
Integrating this, we have for variation from an orbit u, v, ... to another u', v',
S(uyv o) = S(u,vy )
= S‘ (pag-H At — g (\n)\q—H o\\:) .@n
o

The two integrals are over the paths traced out, at A = 1 and A = O respectively, by varying
U, V, ... in (24). If we return finally to the original orbit, i.e. if u' =u, v' =v, ...,

the left-hand side of (27) vanishes, and we have

§(b0"‘1/'\"0\¥) = <§ (bclq/-—Hdk) ’ (28)
1 0
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The notation § indicates that we now have integrals over paths which return to where they

start, i.e. closed paths. We find then, making explicit the sum over degrees of freedom,

that
g (2‘. budq, - H o\t) (29)

is the same for any two closed paths obtained one from another by motion along dynamical
orbits. This is the Poincaré invariant (or ‘integral invariant', or 'relative integral
invariant').

5. LAGRANGE INVARIANT

Consider again the family of orbits (24). From (25) and (26)

L %,H'z_ty
oW 2W ou J, )
whence
2 ?;L A
VI w U [APA AL ° °
Equally A
T
S 'ﬁ»3_3+bb@ o (32)
SW U QU W uoU o
Subtracting (32) from (31),
t\
o 29, P 9P 29 b IW  QH Bt -
T loawdv 2wovu wovUv T 3udv .
o
So we have that the Lagrange bracket
_ZJ 2% Obu by B.l’" l\:’bH _°H ot (34)
[u,v‘ A T A A 2U AV DUV

is constant along dynamical orbits when u and v are constant along dynamical orbits.

Consider a small variation from one dynamical orbit to another,

o9, R
6‘%‘—‘5\1%“ 2 %“D: ?uS\A y © T (35)
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and a second such variation

9
5,9 = %SV,%&:?\%%v (36)

It follows from the constancy of (34) that

Z (Slc‘/w %1\7“*%.\9“&%\ - (S.t%,_H~%‘H Slt) (37)

for variations from one dynamical orbit to any two nearby dynamical orbits, is constant.

This is the Lagrange invariant.

There is a close relation between Lagrange and Poincaré invariants in the case of one
degree of freedom when time t is held constant in relating one orbit to another. From (29)

g \3"‘)‘1 (38)

is then constant as the points (p, q) of the integration path move in time t in accordance

with Hamilton's equations. The integral (38) is just the area of the (p, q) plane contained

the integral

by the curve (Fig. 1). So this area is a constant of the motion (a special case also of

Liouville's theorem, Section 7).

Cconsider in particular a small parallelogram in (q, p) space with for sides (61q, 61p) and

(qu, 62P) (Fig. 2). This has an area

%9 S.p - S.PS.q - (39)

It evolves in the course of the motion, to the approximation linear in small quantities,
into another small parallelogram -- which must have the same area. From the Poincaré
invariance of (38) we arrive therefore at the Lagrange invariance of (39), a special case of
(37).

Conversely, a large area can be seen as made up of little parallelograms (Fig. 3). The
Lagrange invariance of the small component areas then implies the Liouville invariance of

the total area, and the Poincaré invariance of the corresponding line integral (38).
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6. SYMPLECTICS

Let 61 and 62 again denote small variations from one dynamical orbit to two others, for

fixed values of the independent variable t:
Gt = S, =0

Let X, and X, denote the small variations of q and p arranged as column matrices:

--%\Oh“1 —32%|W
8\ P| 87. P|
X, = | 919, 6.9, (40)

%l bl 82.P&

<
r)
L

- —

LT LT

The Lagrange invariance of (37) then takes the form

X, \q X, = constant (41)

where n is the square matrix

—O e} ol - —1 %% T 6?(1
-1 o O - - 5b, -99,

o 04, S PZ
8 b

(42)

s

| H

0

o ¢C|G —
l o
Qo -
1 \
\ )
s
—_
)
]

[eal
P

-

A B R i |

The tilde (~) denotes, as usual, transposition of rows and columns. In particular, §1 is the

row matrix

[_ 25\(1; 9 E’\ bl ) E)\CLL ? %5‘ r>11 T il

In the course of dynamical evolution, from time t to time t', the small variations will

undergo (to linear approximation) a linear transformation,

x = SX (43)
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where the square matrix S depends on t and t'. From (41)

%Ih)(i = %sz (44)
or

A ~
X.SHSXZZ X, b X - (45)
This is so for arbitrary X1 and X2 if, and only if,

§L\%=L) " gH:HS_l. (46)

Such a matrix S is said to be symplectic. Note the partial analogy with orthogonal matrices
0:

o = o'.

An equation such as (46) for matrices holds also for their determinants, so

(O\et g)( Azt L\)( Aek 3) - det "( .

det §= det &, dekl = 1 + o |

we have then

1
|+
-

det S

(47)

For a small time interval
SaA . det S= + 1,
It follows then by continuity that

ak S = 1 (48)

always. This is Liouville's theorem. As we have derived it here it is a theorem about small

deviations from any dynamical orbit to any neighbouring orbit. It can be expressed in two
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other ways. The determinant of S is just the Jacobian of the transformation between

9 P --- and q;, p;, ... . So this Jacobian is unity:

{

B(cl/llv bl/v, q(z—{) \717 - ’-)
ZB(LCL‘ﬂ t>‘7 Cvz1, Pz, - ')

And since the Jacobian gives the ratio of corresponding small volume-elements in (q, p) and
(', p'):

= 1. (49)

S da,db, dq,dp, - - - = g d%.lo 0\\’,/, fl‘t‘/, o\bz/— -- (50)
V Vl

where V is some region in (g, p) space; and V' is the region occupied, at a later time, by
the points into which those of V evolve in accordance with Hamilton's equations. We will

refer to (49) (or 48) and (50), equally, as Liouville's theorem.

8. CONSERVED QUADRATIC FORM

The bilinear form
a3
><| L1 )(1.

is conserved by all symplectic transformations S. The quadratic form

Vo= ,)\(/L]TX (51)

is conserved by the particular symplectic transformation T from which it is constructed.
Thus:

¥(FLT)T X

X'hT X

n

~ —_
X LT x
from the assumed symplectic nature of T,
-
TUT = 4.

Let T be the transformation, for one turn, of small deviations from a closed orbit.
Suppose that T is constant from turn to turn, so that the evolution of X is given by
repeated application of the same transformation T. Then the quadratic (51) remains constant
throughout the motion -- always in the approximation linear in small deviations. It may be
that the quadratic (41) is positive- or negative-definite, i.e. not zero for any X. Then its
constancy guarantees that the motion is bounded (always in the linear approximation).
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In the case of only one degree of freedom (or of one degree of freedom decoupled from

others) n and T are 2 x 2 matrices:
o | _ o b
[,l { T = , (52)
-t 0 < d
~s

U= XhTx = s, (£5q v Aasp) -sh(0sqg + bep)

1l

1 (i
= c(@®9) + (o\-—Ox)S‘LSF -~ b (%b) . 3
This is definite (given det T = ad - bc = 1) if

(0\"* O\\Il /H— <1 (54)

and then has always the same sign as c (or -b).

In the case of several uncoupled degrees of freedom, U is a sum of similar

contributions from each:

n

U + VU, + - - -

< (® G\A\z + (‘A\“O\‘) o0, b — by @’\7‘\1 .l
" (55)
F (500 + (A-0)89, 6 = ba(eh) + - -

If all the Un are positive definite (or all negative definite) then U also is positive

v,

|4

definite (or negative definite). Small changes in the coefficients cannot immediately change
a definite form into an indefinite one. So the stability (in linear approximation) of the
uncoupled case survives the introduction of small enough coupling terms. This has some
significance in particular for the coupling of horizontal and vertical betatron

oscillations.

(For analysis of other conserved quadratics, X n ™ X, see J.S. Bell, AERE T/R1114,
January 1953, and AERE T/R1383, March 1954.)

9. ARACTER c NENTS

Consider again the problem of following small deviations, from a closed orbit, around
many turns. If the transformation for one turn is T, and is constant from turn to turn,

after n turns

( v

X = T X . (56)
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To evaluate this it is convenient to introduce the eigenvalues Ak' and the corresponding

(k)

eigenvectors X , of the matrix T. They are defined by

T x = Ag X(k) , (57)

i.e. transformation of X(k) by T is equivalent to multiplying every component by the same

factor Ak' The Ak satisfy
det [T-ATI} =0 | (58)

where I is the unit matrix. This has as many roots Ak as the matrix T has rows (or columns).

(k)

When all these roots are different, the X are all linearly independent. An arbitrary

vector X can be expanded:

(®)
X = Zk' O X ) (59)

From (56) and (57) then

(k)

x'= Y, O‘Qﬂ ap X, (60)
K

This remains bounded for all n if
U\k\ < 1 (61)
for all k. We then have stability -- in the linear approximation in small deviations.

The left-hand side of (58) is a polynomial in A with zeros at A = Ak' and with leading

<—- )\ \ZV\

where n is the number of degrees of freedom of the system, 2n the number of rows (or

columns) of T. Then

det [T- ALl-= —T (Ak'x\ X (62)
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With A = O this gives

1T /\k = det T = 1 . (63)

So the 2n eigenvalues multiply to unity. In particular: no eigenvalue is zero.

A theorem of Poincaré goes further. The reciprocal A" of any eigenvalue A is also an
eigenvalue. To see this, first multiply (57) by

/\h~| T-l

and interchange the two sides:

T @ N x®

(64)

So the reciprocal of an eigenvalue of T is an eigenvalue of 7 '. But an eigenvalue of ' s

also an eigenvalue of T when T is symplectic. For, using (46) and det n = 1,

n

det [T'- A1) = det H\__T"vkﬂ

= det [T 21y

= o\iL{' [;f?: - )\‘I;} >

SO

det LT —A I’X (65)

]

det (T'-21]

(since interchange of rows and columns does not change a determinant, and does not change
the unit matrix I). Equation (65) shows that T'1 and T have the same eigenvalues. So: the
reciprocal of an eigenvalue of T is also an eigenvalue.

x N
Because T is real, the complex conjugate A of any root A of (58) is also a root. So
when

o<+i(3

N = € (66)
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is an eigenvalue of T,

>\* = e"‘"‘ﬁ (67)
—b —

}\\ = e ¢ (68)
-—p(-t-i('s

ny = €

are also eigenvalues. For instability (in the linear approximation in small deviations) we
must have some a non-zero. If the system is destabilized (in linear approximation) by some
linear perturbation, then as that perturbation is diminished the vanishing of o brings two
different roots together:

N o= Q\V'B*—“’ eiP ‘ (70)

Conversely, if a system is stable (in linear approximation) and all roots A\ are different,
it cannot be destabilized by an arbitrarily small linear perturbation. For instability can
set in only when the perturbation is strong enough first to bring two previously different
eigenvalues together. (One zero of a polynomial cannot suddenly turn into two when the

coefficients are varied continuously.)

The logarithms, o + ip, of the eigenvalues A are called the characteristic exponents.
For stability they must all be pure imaginary. For while a negative a in (66) gives a
decreasing term in (60), the corresponding reciprocal eigenvalue (68) gives an increasing
term.

10. ONICA R N

The variational principle (23) greatly facilitates change of variables. Let the old
variables (q, p, t) be functions of new variables (g, p, t) (and vice versa), and let
fi(3, p, t) be some function of the new variables, just as the Hamiltonian H is some function

of the old (q, p, t). The transformation is said to be canonical if for arbitrary small

changes in the variables
(S psa - Hst)- (. Fsq-nst)=SF o

where F is some function of the old (or new) variables. Define for any path

W g (\70\%— HO\’C) (72)

1

I

w

g ('\;o\cf, - H o\'\é) W+ [F]L NS E)
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This will be the first of a series of canonical transformations. At each step the new
variables of the old transformation become the old variables of the new transformation. We
will then drop the bars (-) in their notation.

12. CHANGE OF INDEPENDENT VARIABLE
Introduce the notation

bo . (88)

1l

t =9, , —H

Then the basic stationary principle

s§(’flb%*““)=o
becomes

N
%S 20 bPubtqu = o . | (89)

The apparent asymmetry between t and the coordinates g has disappeared. Clearly we can take
some coordinate other than q,: say ay = t, as the independent variable. Then Py becomes the
Hamiltonian. Solving

—bo = HO 9o - - %va\"‘\’N)
"bN = \:\(ol/p‘ "%N‘)‘P""’buq) (90)

defines the new Hamiltonian function H. Then from (89) we have Hamilton's equations

ddy _ 28 db,_ 24

n=o0---N-\ » (91)

At 2h Y AF T T 3g, ]

with t = as the independent variable.

dy

For example, from the Hamiltonian (87),

_ 1
H o= /c[chz+ (bg_eAs\l(wx/e) 2+ (b,(—eAd

+ (b= ‘ekz\t yh + € 4’ (92)

taking s as the independent variable, and solving for Py We have the new Hamiltonian
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L

= -es 3 (10 )[R (peend-Goehi]

and the Hamilton equations

——

de _ e Ak oM

Ads  dbe | AS ot ]

ax _ 2H dbe M (50
AS b | as  ?x 7

de _ W db,__ 2l

d b ' dg 22 °

This general method of changing the independent variable is strongly recommended as compared
with ad hoc approaches (for more detail, see M. Bell, AERE T/M 125, June 1955).

13. SCALING

Consider a change of variables such that

Zb%ob~\-\gt.—_ C(Z'\S%ﬁ,—\-\%q (95)

where C is a constant. When C = 1 this is a canonical transformation [with F

but not otherwise. But even with C # 1 the Hamilton form of the equations of
preserved. This is so because

_g‘po\O\,~Ho\t=C§—\5d@—¥:\0\1 (96)

and the stationary principle

%S bdq -Hdt = o

= 0in (71)1]
motion is

(97)
(with q, p, t fixed at the ends) is equivalent to
%S -\')O\ZL—Ho\E = O (98)
(with q, p, t fixed at the ends).
And from (98),
43 20 ab JH
- = - 5 -_ =" . (99)
At 2b at 29



For a canonical transformation

};ps% - 205%71 - SF .

ﬁJ(b?&._';ﬁi) - °F , (112)

N ? - 24 _ F
Zo'(\,%%’-.b?_%) - -—,U_ (113)

Differentiating (112) with respect to u and (113) with respect to v, and remembering
1
F /2w ov = VE/ 2V U

etc., we find

"

N

T (22 2 on)

o 22U U own
That is, the Lagrange bracket

[U,'\f.l = Z ’ai“ B—@_’a&‘&l (115)
0

N - - - -
:E: (‘?1J2 ?i:y - ?lk .?f& (114)
S JU DV DUU -

is unchanged when the variables (q, p) are replaced by others related by canonical

transformation to the originals.

Consider now a small variation from the point (u, v, ...) in which only u is varied, by

s5u, and v etc. are held constant. The variations of the canonical variables are

29 - 09
09 = IO S 9 = OLSU7.L

_ - (116)
s.b = Fhsu . S0P - ghEw |

LY

Consider also a second small variation in which only v is varied, by 5v, and u etc. are held

constant. The variations of the canonical variables are



7.

2 - _ ?9
800 S5V . A =55V
_ S (117)
- 2 T . 2 ‘
0. p = b—%sv ,  Sab = BV

Multiplying (114) by (8u) (&v),

i\-l ( b 9.9 ~ 69 S,,_g = Zo,( 8,p $.9 - 5“‘181-\7) . (118)

That is, for any two variations 61 and 62 from a given state, the Lagrange bilinear

(119)

S (6.p 5.9 - 5.9 5.b)

is unchanged by canonical change of variables. As a particular case, it is unchanged by
dynamical evolution [Eq. (37)].

17. LIOUVILLE INVARIANT

Consider now transformations in which the independent variable is unaltered:

E = ©

. (120)

And consider small variations in which the independent variable is not varied:

St = %t = O - (121)

Let the other small variations be arranged into column matrices:

—S| q/‘ 87. q/\
6| bt 32 p‘

6\ %1 81 q""
%( bl Sz Pl

i
>

M

X2

.
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The Lagrange bilinear (119), omitting the n =

0 term by virtue of (121), is then
4™
X\l’\ X o

where n is defined in Eq. (42). The expression (112) is unaltered by canonical
transformation, because of the invariance of (119). That is,

X 4 % o= Xihx
where

~

=
H

S -
c.t‘ ote.
8\ bl
5,0,
8. b

L

-

The small variations are related, in linear approximation, by a linear transformation

;Z = L X .
From (123),

XLy Lx= Xh X

for arbitrary X, and X, - Then

Thi=l.

that

(125)
The matrix |_ of a canonical transformation is symplectic. It follows immediately from (125)

(Aek L\’L =

In fact

(126)

det =

(127)
[See, for example, Hammermesh: Group Theory (Addison-Wesley Publ. Co., Inc., Reading, Mass.
1962).]

208,70 | 4
3, b))

1
Equivalently, the Jacobian of a canonical transformation (which does not change t) is unity

(128)

(124)

(122)

(123)
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Equivalently, the volume of a given region in (q, p) space, at given t = t, is the same when

measured in terms of canonically transformed variables q and p:

N N NN
g [T dq T1ap = S_ \Tagq 1tap. (129)
R R

Remember again that qo(s t) and p, are not included in (128) and (129), and the canonical
transformation here has t = t.

18. ONE D

Consider a system with one degree of freedom only, i.e. one p and one q (not counting
P, and q, = t). Consider a canonical transformation with t = t. Applying (110) to a closed

curve along which dt = dt = 0,

§\Dr}x61, = %Y")‘Eb ] (130)

This line integral is equal to the area enclosed by the curve. So this Poincaré invariance
(130) is equivalent to the Liouville invariance (128) or (129). It says that the area of a
given region in phase space is the same whether measured in the original q, p or in the new
q, p. It will be shown here that for one degree of freedom this area invariance is not only
necessary for a canonical transformation (with t = t) but also sufficient. That is, given
(130), there are functions F and H such that

(b%%— H St)—(-psﬁ,*\t\%t) = oF . (131)

From (130) the integral

P, b
j (p dq - b Aﬁ,) (132)
%“1 ‘P“

depends only on the end-points, (q", p") and (q, p), and not on the choice of path joining
them -- for the change in (132) on going from one path to another is just

§ (pag - po7)

where the closed curve is formed by going out along the second path and back along the
first. This is zero by (130). So for arbitrary fixed (q", p"), the integral (132) defines a

function of g and p

%, P
5 X (bé\q,-— EA?\/): F(‘b,\’) (133)
%l‘s "

and when q and p are varied,
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S F :b%%—-\;%ﬂ . (134)

All this is for fixed t = t. In general, F will depend on t, if the transformation is time-

dependent, and when t also is varied
%F = \D%"L‘Toﬁi fA(C[,,P,t\S\: (135)

where A is some function of the variables indicated. Define now

Q(;L-:Ev"\: H(%>P>‘=)—A(%,\?,E). (136)

Then (135) reduces to (131). That is, if a transformation from (q, p) to (q, p) has the

area-preserving property, it is part of a canonical transformation.

From (135) note that

— oF
= H-H = R \ - . (137)
A ot ba,n

It is important here, in the partial derivative, to be explicit about the variables (q, q)
that are held constant, as well as the variable t that is varied. For in (133) we indicated
that F be regarded as a function of (g, p), and the conventions implicit elsewhere in these
notes would imply for the notation

2F /ot

the explicit significance

%F/B\:\%v

which is not what is needed in (137).

19. ACTION AND ANGLE VARIABLES

Often we are interested in an oscillatory motion characterized by an amplitude or a
phase. Suppose the motion traces a closed curve in the (q, p) plane (Fig. 5) as the
independent variable t increases. The 'amplitude' of the oscillation might be defined by the
maximum value of q, or the maximum value of p, or in some other way -- for example by the

area of the closed curve. This latter definition gives what is called the action variable J:

_ orea _ A

The area between two curves of slightly different J (Fig. 6) is just

211 VANEEN ) . (139)
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The angle variable y of a point P (Fig. 6) is then defined as the fraction of the area (138)
which lies between P and some reference point -- for example Pu' where q takes its maximum
for the given J -- multiplied by 2m:

’\.Y _ LiM area betweey Pona Po , Jona J+ad
= (140)

ATF->0 AT

Clearly, from (138), ¢ increases by 2w as P makes a complete oscillation from Pn’ around
clockwise back to P0 with J fixed. The definition of J and y in terms of areas in the (q, p)
plane is such that the area of any region in that plane is given equally by

[ oq ap

and

(a7 ay .

That is, the transformation from (q, p) to (J, ¥) preserves areas, Or has unit Jacobian

3(%,?\/5(\P,J) = 1 (141)

and is therefore a canonical transformation (Section 18).

The reader should, as an exercise, construct the canonical transformation explicitly
for harmonic and anharmonic oscillators. Here we will treat the slightly more complicated
case of betatron oscillations in a storage ring. (The treatment of phase oscillations can be
done in a similar way.) The complication is that the Hamiltonian, say (104), depends on the
independent variable s. However, it does so in a periodic way, and then in the linear
approximation the motion does trace out repeatedly a given curve, as in Fig. 5 (an ellipse
in this case), provided attention is fixed on a given s and equivalent points s + ¢, s + 2c,

, where c is the circumference. The transformation from (q, p) to (¢, J) is then
s-dependent -- but periodic with period c.

20. SMALL DEVIATIONS FROM CLOSED ORBIT

Let the transformation T of Section 8, for some degree of freedom which decouples from
the others, be written

T

(o) [
c o

cos M+ & sin }X (5 S N

L

—~Y sinpm tos M - o SIV M (142)
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so defining the parameters o(s), B(s), y(s), w [as in Courant and Snyder, Annals of Physics
3 (1958) 1].

We assume
siv + o (143)

and make the convention

(B t2> o (144)

and note that

2
O\QJC T = [3Y'—°( = A . (145)
The conserved quadric form (53) becomes, denoting the small deviations &q and &p simply
by q and p,
1 (R
U = €9, +(o\—oﬂq,\>—\>\> (146)
. P
T —sin M (Yol, + 20thbq + [L\>") (147)
2
. (8 &
= —Siv M (q’/ + (3(\3+~<1,))_ (148)
(® ¢
The constancy of U (when s is increased by c, 2c, ...) defines the closed curve of Fig. 5

for given s and the given oscillation amplitude. The action variable J is then defined by the

area enclosed by this curve, or equivalently the integral around it

;[.': 5%%1 gé ‘; C*‘L i (149)

The integration is simplified noting that (148) allows the introduction of an angle ¢ such

9, = ;B\U/Sim)u W Cos Y l
\o+%q, = “Ugiup m (= sin \y)[

(150)

Then from (149)

J = —V /2sivn M (151)
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whence from (150)

g = B3 Jp cos ¢
\>+%q, =~\E_—¢J—‘7(; smnyﬁ .

Moreover, by elementary inspection of areas, or by verification that the Jacobian (141) is

(152)

unity, ¥ can be identified with the angle variable of the last section.

The methods of Section 18 could be used to construct the generating function F of the
canonical transformation, from (q, p) to (¢, J), and the new Hamiltonian ﬁ(w, J). However,
the generating function is of little interest when we already have the transformation
explicitly in (152), and know that it is canonical. The Hamitonian H can be obtained more
quickly as follows. From Poincaré invariance (Section 4), the integral (149) is independent
of s:

-
!
)

1. _F

- —
—

S CA\Y

—

(153)

In the linear approximation, an increase of oscillation amplitude simply means increasing q
and p by constant factors; that is, increasing J in (152) without changing ¢. It follows
that dy/ds is independent of J:

= — = I/\)(S) . (154)

where w is some function of s [it cannot depend on ¢, for H does not so depend, from (153)].
From (153) and (154)

H = w(s) J (155)

apart from an unimportant constant.

From (152) the transformation for one turn can be found in the form

q, S A + % Sin A p Siva 9,

1

(156)
b —Y sin & Cos & ~sinall bl

where

N e\\f(s+-vc\ - A (s) . (157)
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Identifying the matrix in (156) with that of (142) gives, using (154),

S+«
M= Qa = g we) as (158)
S

Since w is periodic in s with period c, this shows that p is independent of s. Then (151)
shows that U as well as J is a constant of the motion as s changes continuously (i.e. not
only in jumps of c). Of course these two results are readily obtained by more elementary

methods.

Because w is a function of s, ¢ increases non-uniformly. One can define a related angle

variable ¢ which does increase uniformly:

g !
¢ = ¥ - S wis) ds + MS/ﬁ . (159)

In fact

e /O\S M /:C . (160)

I

The transformation from (g, p) to (¢, J) is still canonical, for

e, bl 3(a, b)) (W, 0)
¢, 7y 2.7 o(&,7)

1 x 1 . (161)

From (160) and the constancy of J the new Hamiltonian is

ﬁ (6(,3‘):: Q\l/ﬁ)]— (162)

An explicit expression for w(s) is easily found in the betatron oscillation case when
b = 0\‘1,/A3 . (163)

Solving (152) for p,
‘p: —\‘izy(ﬁv\ ’\l/‘ + X Cos \k)/ﬂg . (164)
pifferentiating the first equation of (152),

d
dq, /ds = -\ESKX(E w(s) sin +(

=

|

CosS _X . (165)
£ cos y

oL
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Comparing (164) and (165),

nNGY = '1/(5@) . (166)

Also, by the way,

plG) = 2006 -

21. ADIABATIC INVARIANCE OF J

(167)

Let the Hamiltonian be

H("[,,P,S,o(>’ (168)

where o is a parameter (or several parameters), such as mean bending field, which is

constant in a first approximation. In this approximation suppose that an action variable has
been found:

:y. ( Cl’ L) ¥> b S ) S ) . (169)

The rate of change of J is

A3 3T 44 T 4p T 2T e
ad - 22 ZF = Sy = o+ As
ds ~ Dq.ds PPy s o
_ 03 H _ 27 °H +H+B_§éi . (170
EDOL > t’ b a, 2s dot AS

The first three terms cancel together, for J is constant when o is constant. Then

41 | 2T &

—

de  dot dS

. (171)

In general 38J/da will be a function of the oscillation phase §. Suppose now that a
varies very slowly and smoothly. Then J changes appreciably only over many oscillations, and

in calculating this change 3J/da can be replaced by its average over § -- which is
independent of ¢. So

5 J FQT,0) 9% . (172)

That is, the final value of J is determined entirely by the initial J, independently of the
initial ¢. It follows that all the particles lying initially on a closed curve of given J in

the (q, p) plane again lie finally on a different curve of given J. But then, by Poincaré or
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Liouville invariance, the areas enclosed by these curves must be equal. The final and

initial J values are the same. The action variable J is an adiabatic invariant.

22. SMALL CANONICAL TRANSFORMATION

For perturbation theory a form of canonical transformation is required in which old and
new variables are only a little different. Take t = t, and the defining equation for
canonical transformation

SF = F%CL”S;L-*(\’-\—H)S\;. (173)

From this,

%(F'\'F‘{/*E‘L) = G”E) 0q + (0—[,”‘1,\ STD + (Q‘H\ SE . (174)

Now since p will be almost the same as p, (q, p, t) will be a set of independent variables,

and we may regard
F o+ .F@"T”L = )\X(ﬂ,,E,t) (175)

as a function of them. From (174) then, and generalizing to many degrees of freedom,

- RS
YJW = ‘>“ + A ;;_a;n !
— X
C[,V\ = Yn + >\ ﬁ“ ) (176)
q = KB o+ A LU

¥t

When A is small, the new and old variables are almost the same. We have the desired form of
canonical transformation.

There is no approximation in (176). If we work only to first order in A, the difference
between p and p can be neglected in the coefficients of A in (176):

- b —XN¥X /29 |
a-9 = AIX /2b (177)
| Nox /at

I

i

H-H
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Compare these with the infinitesimal form of Hamilton's equations

59
o H

il

~st ?H /29

I

S e 3\_\/3\3 (178)
St aH/2% .

That is, Hamilton's equations give an infinitesimal canonical transformation. We see again

that dynamical evolution generates a canonical transformation.

23. CANONICAL PERTURBATION THEORY

Suppose that when some part of the Hamiltonian is neglected there is a canonical
transformation, to angle and action variables (¥, J), which brings the approximate
Hamiltonian to the form

H. Cﬂ . (179)

The same transformation from (q, p) to (¥, J) will still be canonical when used with the
complete Hamiltonian, transforming it to

Ho (@) + U(\(/,?S,s) . (180)

We look for a further canonical transformation to remove, as far as possible, the dependence
of the Hamiltonian on ¢ and s. To the extent that this can be done, the new Hamiltonian has
the trivial form

Then

(181)

Because y is an angle, and because we deal with deviations from a closed orbit of
circumference c,

1

Ulw+am, T,59)
W(w, T, s+ <)

U(w. 7, &)1
Uy, T, s)S_

(182)

1}
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Because of these periodicity properties, U can be developed in a double Fourier series
_ ]
U"" Uoo+u
Ul

{1

2, Uow (3_> Cikq/ﬁwag (183)

2

where

JL= 2'\7/&3 . (184)
The summation [' is over all positive and negative integers ¢ and m, omitting the term ¢

m = O, which has been separated out. To allow explicitly for more than one degree of
freedom it must be understood that

Y = 3 AV

with as many angles wn, and integers Qn’ as there are degrees of freedom

(185)

Consider now a canonical transformation of the form (175), absorbing however the factor
A into the definition of X:

T = T+ @HAYIX(Y,T,s), (186)
Yy = VYt (3/33)X(W7j,337 (187)
0 o= H + @/s)X(Y,T,s), (188)
= H(F) + (W) /27)(3-T)
+VUoo(T) + V(W,T,s)
+ X (¢, T,s)/?S + R, (189)
where R is of second order in U and X. Calculating (J - J) from (186), and defining
w(s) = 3N /27, (190)
we have
0 = Ho(T) + Uoe(T)
+ (W, T,s) + R (191)
where

\( = ;DSX WV, 7, S\ +L\)(I) \{/ (W.,E:,S) + U’(W,F,S) . (192)

We can make Y zero, so that H is independent of ¢ and s in first order, by taking

. _ IRy +HImRS
X - 2 "Uam(J);e

wman + X w( 57)

(193)



- 39 -

provided there are no integers m, 11, 22, ..., other than 0, 0, 0, ..., such that

Ve F ©, ma+ D Quun(F) = o. (194)
n

The new Hamiltonian will have § and s dependence, and corrections to (181),0only in the

second order of small quantities.

The process can be repeated, pushing  and s dependence to higher and higher order,
subject at each stage to (194). The study of whether this process, repeated indefinitely,
converges, leads to the famous KAM theorem. Roughly, there is convergence at ‘most' points
in w(J) space when U is small enough. But U must be very small for the proof, and
arbitrarily small changes in parameters cause infinitely many changes from convergence to
non-convergence and back again. So the relevance of the very beautiful theorem to real

machines is obscure.



Fig. 1 Poincaré invariant.

Fig. 2 Lagrange invariant.

Fig. 3 Poincaré invariant as sum of
Lagrange invariants.

Fig. 4 Curvilinear coordinates for
point P off reference orbit.

Fig. 5 Area is 2wJ where J is
action variable.

Fig. 6 The shaded area is $AJ
where y is angle variable.
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ON NANC

E.J.N. Wilson
CERN, Geneva, Switzerland

ABSTRACT

Building on classical Hamiltonian dynamics, this paper
shows how a number of transformations can isolate the
perturbation due to nonlinear terms in the guide field of
a synchrotron. The concept of a resonance in transverse
phase space is extended to include islands in phase space
and the catalytic influence of synchrotron motion on beam
diffusion.

1. INTRODUCTION

Hamiltonian mechanics is not everyone's cup of tea. Even experienced
synchrotron designers often avoid the use of canonical transformation exer-
cises to solve the simpler problems like the influence of sextupole magnets
on betatron motion. It is true that for these problems a simple physical
model can be used in which a sextupole is imagined as an element whose focus-
ing strengths increase linearly with radius1). Such a tangible model related
to the familiar concepts of optics is a valuable key to the door of nonlinear
theory and may be used with great effect to predict resonant behaviour near a
third integer resonance. One may extend this model to higher-order multipoles
and into two degrees of freedom but at some point the handwaving becomes too

vigorous to be credible.

Unfortunately, the topical problems of nonlinear theory applied to
today's accelerator and storage rings include high-order resonances in three
dimensions which can cause an inexorable beam loss over periods of hours.
Typical of these problems is the influence of the beam-beam potential seen by
a particle traversing an oncoming bunch in a collider. One can tune the Q
values to avoid all low-order resonant conditions so that it is only the
higher terms in the polynomial expansion of this potential which are impor-
tant. The intuitive model is difficult to apply to polynomial terms which are
typically of tenth order and it is worth taking the trouble to become adept
at the Hamiltonian formalism to solve such a problem.

In the contribution which precedes this onez) , J. Bell has laid a firm
foundation for the understanding of this formalism. In this contribution I
shall first take his expression for the general Hamiltonian of a particle in
an electromagnetic field and judiciously simplify it by approximations which
are valid for large synchrotrons. This will reveal one of the advantages of
the formalism, that each term in the multipole expansion of the field has a

one-to-one relationship with a term in Hamiltonian.
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The next procedure is to apply a number of canonical transformations
which remove the 1lower-order 1linear terms in the Hamiltonian. To the
uninitiated these transformations are unnerving in that they bring one
further from the everyday world in which our familiar optics can be applied.
However, their power lies in the fact that the nonlinearity is isolated and
we are able to plot its effect as a trajectory in a phase space in which
ordinary dynamics is reduced to circular trajectory. The perturbation of the

nonlinearity becomes immediately visible.

To help the reader chart our course we list the canonical transform-
ations to be applied in the form of a table. Each one is to be found in
Ref. 2.

Table 1

Canonical Transformations

. Final
Transformation Purpose .
Coordinates
1| Change of Express as function of s, x x's
independent variable not t. '
2] To action I, 0,y
5 I 1
angle variables (J, ¥) Remove variation of focusing
3| To the coordinates with azimuth. J " s
of a harmonic oscillator 1. ¥4,
4| Infinitesimal Non-linear terms become J v s
point transformation first order perturbation. 21 V2,
5| change independent Opens the way to finding J ¥ 0
variable to 8 a periodic solution. 31 W3
Freezes the trajectory in
6] Transformation to a a stroboscopic picture of J v 9
rotating coordinate system | closed curves, islands and br Why
separatrices.

When this series of transformations is complete we shall have travelled
a long road. Many of the steps on the journey will have to be taken on trust
by those not yet skilled in imagining the new canonical transformations ne-
cessary to recast variables in a simpler form. It may help to think of each
transformation as an imaginative leap like solvinga hard integral, adifficult
step for the uninitiated but easily checked once it is identified. In the end
we shall find a simple geometrical trajectory which exhibits the physical
features of resonant behaviour including unstable and stable fixed points,
islands of stable motion, separatrices and stochastic layers which can lead
particles to ever growing amplitude and cause the diffusion which it is our
aim to explain. The position and separation of these features in phase space
are precisely related to the coefficients in the field expansion of the real

world.
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In the remainder of this report we shall explain each of these trans-
formations in some detail and then discuss the effect of nonlinearity in
creating unstable regions of phase space, on the width of resonances and on
the growth of amplitude when crossing resonances. All this will be treated
for motion in one degree of freedom. We shall then see how by adding a
further degree of freedom, synchrotron motion, the topology of phase space is
altered and sketch out how one may lead to the Cherikov limit beyond which
slow but continuous beam growth occurs. A criterion for purity of magnetic

field then emerges.

We leave the details of discussion of the consequences of adding a sec-
ond transverse degree of freedom and a third dimension to the field shape to
other authors3) but indicate the qualitative consequences of these extensions

to the one dimensional model.

In all sections of this report, we shall refer to J. Bell's contribution
to the 1985 CERN Advanced Accelerator Schoolz)

vised to have at hand. Another useful reference is E.D. Courant, R.D. Ruth
4)

which the reader is well ad-

and W.T. Weng

The next section describes the 1link between the rigorous and general
treatment of Ref. 2 and the simplified Hamiltonian which is the starting
point of our discussion. The reader may choose to omit it on first reading

and pass to Eq. (8).

2. R (0) HAM

It is a good idea to start from one of the fundamental expressions to be
found in text books on dynamics in an electromagnetic field. We shall rather
soon introduce approximations which are justified in the context of a modern
synchrotron. Watch these carefully. If your particular synchrotron is a small

one you may wish to review their validity.

Reference 2 gives the general Hamiltonian for a charged particle of
mass, m, and charge, e, in a magnetic vector potential, K, and electric po-

tential, ¢:

H=ep+cV(p- eA)2 + m2c2 , (1

c is the velocity of light,
A and ¢ are functions of space and time,
P is the momentum conjugate to the space coordinate.
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We shall choose the coordinates shown in Fig. 1. The transverse dis-
placements are x and z while s is measured along the particle's trajectory.
The local radius of curvature, o, is dependent on the local magnetic field
and is therefore a function of sS. We can express the Hamiltonian in these

coordinates as:

-2 1/2
H = c{mzc2 + (ps - eAs)2<1 + %) + (Px - eAx)2 + (pgz - eAz)Z} + ep . (2)

Local centre
of gyration

Central orbit

s ( Tangential to beam direction )

Fig. 1 Transverse coordinate system.

From now on we shall drop ¢ which is assumed to be constant. We are only

considering magnetic and not electric fields.

The independent coordinate in (2) is t but it would be more convenient
to use s since the machine turns out to be periodic in s. In his treatment of
scaling Bellz) gives explicitly the canonical transformation for this change
of independent variable. The reader may remember that since H is conjugate to
t and pg to s, one may turn the Hamiltonian (2) inside out by writing a new
Hamiltonian, K, which is really -pg expressed as a function of the other

canonical variables together with s, the new independent variable:

2 1/2
K = -eAg * (1 + %){(gl) - m2c2 - (px - eAx)? - (pgz - eAz)Z} . (3)

We can further apply simple scaling to new coordinates (with a bar):

E=QI §=sv E=BI K = ' (4)

P

LR

where

Pc = 'Vpg - mc2. (5)
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So that

— eA X — eBy\? — eh,\2 /2
K=——s-(1+—>{1-<px——’—‘> "(Pz"‘g)} . (6)
P e P P

Finally, in our attempt to recast the Hamiltonian in a more tractable
form, we shall ignore the vertical plane and approximate by assuming o = .
Furthermore, we shall assume the magnetic field is only transverse so that
Ay = A, = O.

These drastic measures should not be forgotten. They are completely
justified to study horizontal motion in a large synchrotron comprising long
magnets but would have to be re-examined in the case of a small machine in
which the end fields of lattice elements are of importance. With these reser-
vations we obtain a new Hamiltonian which we call H because we are running
out of alphabet:

eA —
Hx - —= - (1-p3)"2, (7)
P
and if py « 1,
=2
eA P
H~ - —2 4+ X | (8)
P 2
3. HE MAG C VECTOR POTENTIA OR L LE

It would be difficult to unravel the problem of nonlinear motion in a
synchrotron if we were not able to analyse magnetic fields in to a series in

which each term corresponds to a magnet with a certain number of poles.

We have already announced our intention to ignore the ends of magnets
where there can be transverse components of the magnetic vector potential and
restrict our analysis to the body of long magnets where only Ag is finite and
there are only the transverse components of field, Bx and B, . This has the

virtue that the vector potential can be expressed by a series:

]

Ag g Anfn(x, z ) (9)

L Ap(x + iz)n .| (10)
n

In this expansion f, corresponds to a multipole with 2 n poles. The real
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terms form a series for "normal" multipoles for which the field is normal to

a horizontal mid-plane and the imaginary terms correspond to skew multipoles.

We can derive the vertical field component for a 2n pole magnet:

- L xPTh (11)

Bz(z=0) = =n A

and we can write this as a term in the Taylor series:

B, (z=0) = x(n-1) (12)

We can also write the first term in H (Equation 8) as:

eAg 1 1 a(n-1)p,
—_— = — —_— —— n
P Bozn! ax(n-1) X ¢ (13
and our Hamiltonian becomes:
2 -
1 1 3ln-1)p
H = X, - Z xn . (14)
2 (Bg) nt ax(n-1)

=0

We immediately see that each order of multipole will contribute a term
to the Hamiltonian. It is hardly a difficult step to see that if we were to
allow both transverse degrees of freedom a normal multipole with 2n poles can
contribute a set of terms xN, xN-2z2, xh-4;4 yhile a skew multipole, cor-
responding to the imaginary terms in the expansion of Egqg. 10, would introduce
the missing terms xN~'n, xN-3z3 .. in the homogeneous polynomial. It can be
shown that each term corresponds to a line in the Q diagram, so this is
helpful in identifying the kind of error which may cause resonant loss at a
particular working point.

4.  LINEAR DYNAMICS IN ACTION ANGLE VARIABLES

Readers who are already familiar with the theory of transverse dynamics

will remember that linear motion is described locally by Hill's equation:

d2x

382 + k(s) x =0 . (15)
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This is a differential equation with a periodic coefficient. The focus-
ing strength, k(s), repeats every turn of the ring, or even every super-
period, if the lattice has a symmetry within a turn. The periodic variation
of k(s) distinguishes the solution from simple harmonic motion giving rise to
an amplitude function, /B(s), that varies periodically with s reflecting the
focusing pattern, k(s). The motion can be converted into that of a harmonic

oscillator with a simple sine like solution by a change of variabless):

X
= 2 16
n = (16)

We can see that the Hamiltonian (if we take only linear terms) has the

same periodic coefficient:

g = B2, k(s)x2 : (17)
2 2
where:
1 3B
= —z (18)
(Be) 9ox

Incidentally it is an excellent eXxercise for newcomers to apply Hamilton's

equations to (17) and thus derive Hill's equation.

Expressed in the jargon of Hamiltonian mechanics the difficulty with
Eq. 17 is that H is not time-invariant. (Remember that earlier in Section 2
we used s instead of t as an independent variable). The difficulty is really
the same as that with Hill's equation because if the Hamiltonian were to be
time invariant it would generate the differential equation of a harmonic
oscillator, and the trajectory of the particle in phase space would be the
same closed ellipse independent of the observer's position, s. The trajectory
could then be labelled with a numerical value, a constant of the motion. The
momentum conjugate to any coordinate which is not in the expression for H is

invariant, this applies equally to H itself which is conjugate to s.

Perhaps this is the first inkling for the diffident recipient of Hamil-
ton's legacy that it might be of some practical value. He or she will be
pleased to learn that the canonical transformation to action and angle varia-

2)

bles discussed by Bell is Hamilton's solution to this difficulty.

If we were to derive Hill's equation from the Hamiltonian (17) and solve

it we would find:

Yy = E1/281/2(s) cos[p(s) + 6] (19)
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s
«p(s)=/ s, (20)
B(s)
(o]
where
y is the general transverse coordinate,
Q is the betatron wave number,

B(s) is an amplitude function periodic in azimuth,
E is an emittance defining an azimuthal invariant,

5 is an arbitrary phase.

We must find the momentum which is conjugate to y and for this we use

Hamilton's Equation:

dy _ 9H(y,s) =p . (21)
ds op

By differentiating Eq. 19 we find:

p = —B1/ZB‘1/2(S){sin[w(s) + &) - g; cosl[e(s) + 6]}. (22)

We are now in a position of having physical coordinates (p and y) which
are conjugate according to the rules of Hamilton. Neither of them is a con-
stant of the motion. In our desire to freeze out the linear terms it would be
an advantage to transform (p and y) to new coordinates (J and ¢) in which J
becomes independent of time. In Ref. 2, Bell achieved this for the case of a
harmonic oscillator by using a canonical transformation into action angle

variables.

The mathematical procedure for performing this type of transformation is
to construct a function of a pair of old (p,q) and new (P,Q) coordinates

which must have one of the four forms:
F1(qIQlt)l FZ(qvat)l F3(plQlt) orxr Fk(PrPrt) . (23)

In general Fi{ can be used for interchange of momentum with displacement
or mixing them together to form invariants, while F, can be used for ro-

tations or small perturbations in displacement or momentum space.

For the purposes of transformation into action and angle coordinates we
select the first type. There is a prescription for performing the change of

coordinates:



_ oF 4
Pl - aql (24)
o OF4
Py = - —aQ_l (25)
oF 4
K =H + 3T (26)

The way in which this works may be tried out by using the function:
Fi1(q,Q,t) = qQ (27)
to achieve an interchange of initial displacement and momentum.

By using the less obvious:

F1(a,¥,8) = %V/"E a2 coty , (28)

one may reproduce the transformation of the harmonic oscillator into action,

angle variables and obtain Bell's resultZ):

q = /75 (k/m)'* cose (29)
p = -/Z3 (m/k) "/ *sing (30)
J = constant (31)
$ = dH/dJT = w = 1//mk . (32)

Having flexed our muscles in this case we can move to the real problem
of transforming Hill's equation. This is a general form of a harmonic oscil-
lator and it is not surprising therefore to find in Ref. 4 Eq. 4.51 that the
generating function has a form not unlike Eq. 28:

[tanw - gl] X (33)

[N
U

Fi(y,¥,8) = -

We remember that B is a function of s.

The rules for applying this function are:

(34)
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and the new Hamiltonian

oF4
K=H+ — . (35)
90s

The full transformation requires a number of clever substitutions to
obtain J, ¥ as explicit functions of the old coordinates and K as a function
of the new ones. The student may find it instructive to work out the Egs. 34.
The first yields an expression for a tany which can be substituted in the

second to obtain:

1] 2
2J = % [yZ + (sy' - £§x> ] . (36)

This will be recognized by anyone familiar with Courant and Snyders) as

an invariant of particle motion around a synchrotron. Even though B is a
function of s, J is constant. If J is the invariant for the largest amplitude
particle in a beam 2J is just the emittance, E, which includes the beam. wE
or 2wJ is the area of the phase space ellipse anywhere in the ring.

2)

We remember that the action and angle transformation of a harmonic os-

cillator also gave an invariant 2wJ which was the area of the phase contour.

If we were to go through the full transformation procedure (see Ref. 2

again) we would find that the new Hamiltonian is:
K = J/B(s) , (37)
which should be compared with
K = Ju (38)

for an harmonic oscillator. The analogy between frequency and 1/B(s) is ap-
parent. Hamilton's Equations give:

dy _ 8K _ 1 . (39)
ds 0J  B(s)

Yy is none other than the familiar betatron phase advance and we are not

surprised to find:
y = V2JB cosy (40)

y' = - V2378 [sinb - (B'/2) cos¥] . (41
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We have arrived at an invariant momentum, J, conjugate to ¢ but the
Hamiltonian K still varies like 1/B(s) around the ring. To finish the job of
freezing out the linear motion, we need to transform into a new coordinate
system (J1,%1). (Note we use suffix 1 to indicate new coordinates. We shall
continue the policy of adding one to this suffix each time we transform). The
new and old coordinates are related by a generating function of the second
kind. This kind of generating function includes rotations in space and does

not mix momenta and coordinates as does Fi:

S
Faw,J1) = Jq | 2728 —f as_ |4y, (42)
c B
o
S
3F2 210s as’
v = 2F2 ; (43)
"Tan VT e f B(s")
o
oF
g === 3, (44)
3w
where
2uR
2mQ = f gi and C = 2mR . (45)
o

The new Hamiltonian is related to the old one of Equation 37 by:

oF 2n
Ki = K + 22 - 2@
9s 2nR

Q
Jq = E - J = constant . (46)

by

Fig. 2 Phase space trajectory of a linear

system in action angle coordinates.
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We have now reached our aim insofar as the linear dynamics is concerned.
In the new coordinates (Ji9,¥¢1) the trajectory of the particle is a circle of
radius J which is numerically equal to half the emittance of the beam it
includes. The variable ¢ goes from O to 2w in one betatron oscillation. The
Hamiltonian is independent of s (or time). In the next section we shall see
how this leaves the way free to express non-linear motion as a perturbation
of this circle. The circle will be distorted, its circumference will develop

waves and an archipelago of islands will form.

5. RTU EORY

With the linear problem behind us we are ready to use perturbation the-
ory to treat the nonlinear effects. The terms in the Hamiltonian (Eq. 14)
with a cubic or higher transverse dependence are nonlinear. They arise from
sextupole and higher multipole fields distributed in azimuth, s, around the
focusing lattice. Unlike the linear terms they retain their s dependence even
when we apply the canonical transformation to action-angle variables, J¢ and
¢1. In order to reveal the way they distort the perfect circle of Fig. 2 we
must first apply a transformation which removes the s dependence of the Ha-
miltonian so that H becomes a new invariant of the motion. The transformation

which does this will tell us how much the circle is distorted.

The prescription for finding the canonical transformation which irons
out the s dependence is described in Ref. 2 in the Section on Canonical
Perturbation Theory. To help the reader relate to Ref. 2 we should point
out that we add one to the suffix rather than use a bar to indicate a new set

of coordinates
At the centre of canonical perturbation theory is a generating function
of the second type which is an infinitesimal perturbation of the function
which generates the identity transformation:
F2(J2,¥1,8) = Ja2b1 + x(J1,¥1,8) , (47)

where x is small.

The new and old coordinates are simply related by the first derivatives

of this small quantity, x.

J1 = J2 + =2 x(91.32,8) (48)
o1
)

P2 = b + — x(b1,J2,8) (49)
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Hz = Hy + I x(bq,J2,8) . (50)
9s

The first term in Eq. 50, Hji, will contain the unperturbed Hamiltonian
(Eq. 17) plus a small nonlinear perturbation due to one or more of the cubic
or higher terms in Eq. 14. Of course, we must transform this nonlinear term
into (J1,¥1) coordinates using substitutions from Eqs. 37, 40, 41, 43, 44 and
46. The nonlinear terms will give it an s dependence.

our plan of campaign is to choose the function x in such a way that its
differential, dx/ds, exactly cancels out the s-dependence making H; a

constant of the motion.

But how do we choose the exact form of x? At the moment it is arbi-
trary. We can first rewrite Eq. 50 to explicitly include the linear part of
the Hamiltonian, Hg, and the perturbation U. Both are functions of J: but we
apply a trick and will write them as functions of J + 9x/0¢y rather than
Jy. This is to make it easier to identify first and second-order terms when

we expand the terms:

_ ox ox 9x
Hy = Hgo(Jd2 + 307 + Uldq, J2 + 307" s| + I (51)

We next must eliminate second-order terms and to do this we shall use another
trick and introduce three new pairs of terms which cancel. This will help us
group all the terms which are either of second order in U or are independent

of J, ¢ or s in rectangular brackets:

9x Q
Hzo = Hp(J2) + [Ho(Jz + W;) - Ho(J2) - R (J2) m]
(52)

ax J + 2 J ———ax + 21 + U
+ | U1, J2 + W!s - U(p1,J2,8) 'ﬁ' (J2) EYT) 3s (b1,J32,8)-

If we examine the contents of the rectangular brackets very carefully

and remember that (Eq. 46):

Q OHp
R (Jqy) = 377 ! (53)

we find that the brackets reduce to:

1 3QR ;ax }2 , U ox

2 31 332 3y

54
2 83, ' (54)
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which are purely second order and can be left out to give:

Hz = Ho(J2) + 9 (J2) El— + 25 + U(pq,J2,8) (55)
2 1] 2 R 2 a¢1 3s 1192, .

At this point we shall digress to attend to a small detail. The indepen-
dent variable is still s but we shall find it much more convenient as we move
into Fourier analysis to use the azimuthal angle 8 = s/R. In Ref. 2 it was
shown that one may scale a pair of conjugate variables. To preserve the
Poincarré invariant we must multiply H, the conjugate to s by R:

H3 = RHa, 8 = s/R (56)
Y3 = b2 ,
J3 = J2

This gives the Hamiltonian of Eq. 56 as a function of 8:

ox

H3(v3,J3,8) = Ho(J3) + Q(J3) —
oy

ox
+ R — + RU(¢q,Jd3,8) . (57)
ds

To return to our aim of removing the s dependence in the last three

terms of Eq. 57 we can simply impose the condition:

Q(J3) 8 + Ax + RU(¢q,J3,8) =0 (58)
3 301 a8 1193, ]

and H3j will be independent of s.

If we know the driving perturbation U(¢4,J3,8) we can solve the diffe-
rential equation 58 to find x.

To find this solution it is convenient, and physically revealing, to
analyse U into a Fourier expansion, either a single series in ¢, or a double
series in ¢ and 8. The single series method is simpler to start with and is
appropriate if one is far from a particular resonance condition. One assumes
the function x can be also expanded as a Fourier series and then one solves
the differential equation for x term by term, rather in the manner of solving

electrical circuit problems.
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6. T ON E AN

To first flex our muscles in perturbation theory we solve the problem
far from resonance. By far from resonance we mean that the quantity, mQ-n, is
large compared with the width of the nearest resonance. We express the
perturbation as a single Fourier series in ¢, the "betatron" variable. The
index of the summation is +the multipole number, 3 for sextupole, 4 for

octupole, etc.

U = Z Up(J3,0)ei™3 (59)
n=0

The solution to (58), x, will also be a Fourier series:

X = 2{: xn(Ja.G)ei"¢3 ' (60)
n=0

and by substitution in (58) we find:

:)
PnQ(Jg) + 5;] Xn = -RU, . (61)
This has the solution:
8+2m
i i _g-
= — einQ(8'-8-m)y _(p')ae"’ . (62
Xn 2 sinwnQ f n )
8

The function x formed by summation (Eq. 60) will then remove the s
dependence of the Hamiltonian and make the new Hamiltonian a constant of the

motion:

Hy = Ho(J3) + L RUL(J3,8)ei™? (63)
n

How do we use this function x which magically renders the Hamiltonian
invariant in order to deduce the distortions it makes to the simple linear
circle, J1(p9)? We can show that not only is the new H3 independent of 8 but
that J3 is invariant to first order. Equation 53 reminds us that the rate of
change of Y is just Q/R, a constant. It can be shown that the first—orde;
effect of the perturbation is simply to add a small constant term to Q so
that, to first order, J3 is an invariant. We must now look carefully at
Eq. 48. The new J is invariant and so the old J; is defined as a function
of azimuth by the derivative of x. If we know x from computation of Eq. 62 we
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can find this derivative as a function of ¢1 and trace out the perturbed Ji1¥1

circle.

7. RESONANCES

Close to a resonance we must expect to have to take into account partic-
ular harmonics of the error distribution which act coherently with betatron
motion. As a first step we assume that the perturbation is periodic in both ¢

and 8 and expand as a double Fourier series:

U = L Upp(Jz)et(n¥2m8) (64)
in which the coefficients are:
2w 2w+
Upg = — U(pTz2,0)et (M ™) ggqy (65)
(2m)2
0 V2

The treatment follows a parallel path to that of Section 6 and we arrive
at the expression for x and H:

RU .

k=AY g () etmemd (&6
m,n

H3 = Ho(J3) + RUpp el(nd-me) (67)

Again we may use x to compute the nonlinear distortion of the circular
trajectory but close to the resonant condition nQ = m the dominator becomes
small. Therefore, we begin to suspect the validity of our first-order ap-
proximation and in particular our argument that H3 was essentially indepen-

dent of explicit J3 dependence.

Fortunately, if we zoom in on the one resonant term (which we are justi-
fied in doing when we are close to mQ = n) there is a transformation we can
apply which gives an H, which is the exact invariant of the motion and which
yields frozen contours in phase space. We no longer need to apply Eq. 48
assuming J3 = constant since the equation of H, itself defines a contour or
trajectory in phase space. This alternative technique of finding the trajec-
tory only works if we drop all the Fourier terms except the resonant combi-

nation, n,m.

Starting from Eq. 67 we apply an F; type of generating function
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F2(V3,74,8) = <'b3 L J:.) (68)
to find
J3 = J4 (69)
¢=<w3 -%a) (70)
Hy = (Q - 2>Js + RU0o(J4) + RUpy eine (71)

The new angle coordinate means that our reference frame rotates so that
¢ = O advances n turns while ¢ advances m oscillations. This has the effect
of "freezing" the resonance in our new phase space. The result is a Hamilton-
ian which is independent of time and which defines a closed contour in phase
space. We shall use this to explore the examples of third and fourth-order
resonance before generalizing the theory and moving on to explain invariants

and islands in phase space.

We have finished the bulk of the Hamiltonian formalism so a little reca-

pitulation is perhaps in order.

There are two approaches to finding out how nonlinear terms distort the
simple circular trajectory due to linear focusing in (H¢,¢$4) space. The
first, outlined in Section 5 uses first order perturbation theory to find a
generating function, x assumed to be a single Fourier series related to the
azimuthal pattern of the perturbation. Once found, the generating function
tells us the distortion of the circle provided it is small. The second ap-
proach is to use a double Fourier expansion and then change the coordinate ¢
so that it keeps pace with the resonant oscillations at a stopband: mp = né.
This gives an exact invariant Hamiltonian which itself defines the path in

phase space but ignores all but the resonant perturbation.

8. ITHE THIRD-INTEGER RESONANCE

One of the confusing aspects of a generalized description involving a
number of transformations is that we tend to lose track of the numerical re-
lation between the final coordinates and the initial physical system. In this

example we try to give the reader the link between these coordinate frames.

Let us now take a practical example of a sextupole-driven resonance. We
suppose that the Hamiltonian expressed in “"normal" coordinates includes a

sextupole field:
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pz  k(s) 1 92B,
X2 + ——
2 2 3!(Beg) 0x2

(72)

First we must transform into action angle coordinates (J,Y) applying
Egs. 37, 40 and 41 and then, to arrive in a coordinate system in which the
Hamiltonian of a linear system would be a constant of the motion, we apply
Eqs. 43, 44 and 46. The final coordinates are (Ji1,¥1) and the Hamiltonian,
Hq:

Jq + cos3ypy . (73)

Q (2348(s)13/2 a2p,
R 3! (Bo) ox2

The new angle variable, Y4, is defined:

s
- B ds' _ Q4
b v ,/‘B(s) R
o

(74)

s
where P = f ds .
B(s)
0
We recall that the old coordinates are x and x' related to J and ¢ via:

X = {/535737 cosy

(75)
p=x'=-+v2J/B(s) siny
We can now make use of the purely trigonometrical relation:
1
3 = e— + .
cos3 YEETY (cos3y, 3 cosyi) (76)

Ignoring the second term which in general does not drive a one-third-
integer resonance:

Hqy =

23/2 J 3/2 3/2 32p
2, +[ . L2 1121 N (77)

R 2371 3! (Be) dx2
The second term in this equation is the perturbation, U, in Egs. 55 and

58 and, applying directly the result of perturbation theory at a resonance
(Eq. 71) we have:

Hy = (Q - %) Js + RU3p cos3ep . (78)
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The Ugp term in Eq. 71 is zero for m = odd multipoles. Here U3, 1is the
double Fourier coefficient (with respect to ¢ and 8) of U(¢y,8) and written

explicitly is:

2wR

S
Bl | }[ ga/2ge 1AL (1/8I-(@/R) Jas:

Usg = 0 e-ims/Rgs . (79)

31(Be)23" ' [ 2wR

In addition ¢ is given by Egq. 70.

The integral exponent merely takes care of the relative phase slip of
betatron motion with respect to Q8 which occurs between quadrupoles of a reg-

ular lattice. In many cases it may be ignored.

Note too that the content of the curly brackets is none other than

Guignard'sG)

state from which one may generalise for any multipole with 2m poles:

dp. We have left the powers of 2 and factorials in their crude

2R

S
ifn((1/8)-(Q/R)])ds"
! ./. gn/2p(n-1)¢ 0 e~1ms/Rgs). (80)
2wR

(o]

Jn/2
n!(Bg)2n-1

Unm =

Having computed Uy, numerically, we can substitute back in Eq. 71 to
find the Hamiltonian for any desired order of resonance. It is worth remem-
bering that the expression for Upy becomes much simplified when one does
the Fourier analysis for a single short sextupole or a random distribution.

GuignardG) gives expressions for dp, the curly brackets for this latter case.

9. Cc Y IRD-IN R _RESONANCE

All this has become very mathematical and the reader may be forgiven for
a little impatience to see some phase plots showing the perturbed trajecto-
ries. In order to find the shape of these phase plots we must take a hard
look at Eq. 78. We shall drop the suffixes from the notation and examine the

contour defined by the Hamiltonian of Eq. 78

Hy = (Q - %)Jg + RU3p cos3e . (81)

Rewriting it to show the J dependence and defining constants & = Q-(m/3) and
€ = RU3p/J3/2 to obtain a streamlined:

3/2

H=086J + eJ cos3¢p . (82)
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If the coefficient of the second term is small, either because the
amplitude is small or the driving strength is weak, the contour will be close
to a circle (J = constant). The same will be true if the Q is distant from a
third integer making, &, the coefficient of the first term large.

If the converse is true the circle will be distorted inwards when ¢ = O,
2w/3, 4w/3 and outwards inbetween to become somewhat triangular. Note that
this triangle does not rotate but is frozen in (J,p) space - a consequence of
the change to a rotating coordinate system. Figure 3 shows constant H con-
tours in J,V space. We can see this kind of distortion growing with

amplitude.

Separatrix

Unstable fixed
points

unstable

/”P:Tﬂ3

%

Fig. 3 Phase space plot in (J,y) coordinates of a third-

integer resonance (adapted from Reference 3).

We remember from Hamilton's Equations that:

a3 _ _ BH _ 3.53/2 gin3y (83)
ds o

de _ 8H _ 5 , 3 51/2 053¢ . (84)
ds J 2

when both these expressions are zero a particle will stagnate in phase

space lying on a "fixed point". For this to be the case Eq. 83 demands:

sin3e = 0 , (85)



- 61 -~

so that dJ/ds = O. Then we can write cos3¢ = %1 in Eq. 84 and ask how this
can be zero. Above resonance, the sign of & is positive and provided e is

positive d¢/ds can only be zero if:
cos3p = -1 . (86)
These conditions on ¢ define three fixed points at
¢ = w/3, 3v/3 and 5w/3 . (87)
From Eq. 84 we can also find their amplitude:

Jsp = (28/3e)2 . (88)

Inside this amplitude the triangular trajectory becomes less and less
distorted and more circular as one approaches J = O. Outside, the trajecto-

ries diverge in unbounded motion towards infinite amplitude.

The value of Q in Eg. 33 is the unperturbed Q for zero amplitude parti-
cles which corresponds to the centre of the diagram. The betatron wave number
increases with J and becomes exactly one third integer at the fixed points.

This difference in Q
5 =Q - (m/3) (89)

is just the stopband width for a particle of amplitude J. Any particle with
an unperturbed Q closer to the third integer than this will be already
unstable if its amplitude is J. Note that if we tune the Q closer to m/3 or
increase the strength of e the stable triangle where motion is bounded will

shrink and expell particles. This is the principle of third-integer ejection.

!

J

Fig. 4 The variation of Q as a function of amplitude

close to a third-integer resonance.
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10. E EFFEC N OCTUP

This section is not merely a repetition of the previous one for a dif-
ferent multipole. An octupole leads to an extra term in the invariant Hamil-
tonian which corresponds to a nonlinear variation of frequency with ampli-
tude. This is characteristic of "even" multipoles and defines quite a diffe-
rent topology of phase space.

First we must write down the Hamiltonian in "physical" coordinates:

p2 1 1 03By,
H=—+ — k(s)x2 + — ——= x4+ | (90)
2 2 4! (Bp) 0x3
where k(s) is defined in Eq. 18.
After transforming to action-angle coordinates:
2J8 4/2
Hy = 20 5 LIB)TT L) oauy (91)
R 4! (Bp)
where
03B
B(3) - 3z (92)
ox x=0
zZ=
Adaln we expand
cos4y = 1 cos4yp + 4 cos22¢p + — 4! . (93)
24 [(4/2)!]2

The first term in Eq. 93 will resonate at quarter integer Q values, the
second at half-integer values and the third adds a Ugg term to the Fourier
analysis of the perturbation. It is this that gives the amplitude variation
of Q.

We ignore the half integer term for the purpose of this discussion, but
we are interested in the Ugp term. This was missing in the case of the third

(and all odd) order resonances. Equation 71, the general form of the Hamil-

tonian for a resonance
H = (Q - %)J + RUgo(J) + RUpy cosne , (94)

may be differentiated to find an average shift in tune:



day OH m\ R3U,,(J)
o-2) e (55

dJ

For the fourth-integer case we find AQnp , the perturbed second term, is
protortional to J:

4! R . 9B g(3)

(96)
24[(4/2)!]2 3! Be

AQONL =

and for other even orders of n we can find this nonlinear time shift Qj, by
differentiating:

2uwR

2
Ugp = —I%/2nt 1 gn/2p(n-1gs . (97)

20[(n/2)!1% =R

11. -SPAC T P EQUENCY VARIATION

The trajectories discussed for the third-integer case had no term equi-
valent to RUgg(J) in Egq. 14. Let us explore the topology of phase space
trajectories with a generalised invariant Hamiltonian of the same form as
Eq. 82 but including the nonlinear shift a«(J):

H=58J + a(J) + eJ0/2 cosmp . (98)
We remember that the perturbed Q is:

o= _ 54 a@ +
37

1=}

eJ(n/2)-1 cosme . (99)

The first two terms cancel on average when J has a resonant value Jr defined
by the condition:

a'(Jy) = -6 . (100)

If we look at small changes in J about J, by a second differentiation we
find:

(3 -3,) =- 3 E: J](:n/Z)‘1 cosmyp . (101)
o

We now have stable and unstable fixed points at cosmp = -1 and +1 re-

spectively and separated in J by:
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BE ;(n/2)-1 (102)

o

The existence of stable fixed points in the real plane is new and is
only the case for even-order resonances. We find that they are the centres of
an archipelago of stable islands. Trajectories circulate around these points
within the islands. The unstable fixed points are at the junction of the is-
lands and the diagram is identical to a series of RF buckets plotted in polar

coordinates with a harmonic number equal to m.

The width of these islands may be calculated and is found to be:

J n/2
ATy = 2 f_f_u)____ : (103)
a

where J, is that of an unstable fixed point.

T

LTSS SR
"0 g s oot ™

Fig. § The effect of an octupole near a fourth-order

resonance (adapted from Reference 7).

Motion will remain contained within the islands unless there is some way
in which particles may "leak" out. One mechanism which may cause leakage is
the presence of another archipelago which overlaps. This is said to cause
chaotic behaviour. The next set of islands of comparable order will corre-
spond to a change of Q of the order of 1/n where n is the order of the reso-
nance. Since a" controls 38Q/dJ the spacing in phase space is:

AJS=1—7

1 (104)
x n
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We can expect these archipelagos to overlap and chaos to ensue when:

AJy = AJg (105)

qegn > L .1 (106)

nz u"

-

This is the Chirikov limit and normally does not happen in any machine
built with reasonable care. Unfortunately, even in a clean machine,synchro-
tron motion or magnet ripple can produce sidebands to the main resonance and
increases the number of resonance lines each of which produces its own set of
islands. The chaotic condition is much easier to reach as phase space becomes

much more crowded.

12. ITUD TH O OSSING

So far we have described the dynamics of a machine in which neither the
magnetic field nor the momentum of the particles change with time. Many of
the less welcome effects of nonlinear fields only become apparent when either
the magnetic field changes because of ripple in the power supply or when the
particle’s momentum changes sinusoidally as it executes synchrotron oscilla-
tions in an RF bucket. It is a relatively common experience to find that an
injected beam survives until the accelerating cavities are switched on and
then is extracted by a nonlinear resonance. The explanation usually given is
that oscillations in radial position together with the chromatic properties

of the lattice cause the particle to cross and recross the resonance.

One way to see what happens in the time domain when a crossing occurs is

derived by Guignards) . We will not attempt to give his derivation here but
only his result. Suppose We cross a resonance (order, m) at a speed of AQ4

per turn. The equation of growth is:

X
df1=AQe - 1/2 ' (o7
xn (n]|AQ¢|)

(0]

where:

n = order of the resonance,
AQe = half width of the resonance.

On integration this gives (for one crossing):
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n-2 2
(1 N fﬂ) - ____192_77; _ (108)
x (n|aQ¢])

One may go on and calculate what happens if the time is modulated due to
synchrotron oscillations:

Q = Qo + Q sin(Qg Qt) , (109)

where Q is the revolution frequency.

However, it is more direct at this point to move into the frequency
domain and analyse synchrobetatron resonances.
13. ROTRON SON.

It is a fact well known to electron accelerator physicists that each
nonlinear resonance has a series of satellite lines, parallel to it and
spaced by Qg/n on either side of the resonance, where Qg is the synchrotron

wave number or number of synchrotron oscillations per turn.

If we return to the Hamiltonian for a nonlinear resonance we find the

perturbation term is always proportional to:
cos(ny - m8) , (110)
where:

dy/de
L

I
O

fQ das.

Now if Q is modulated by synchrotron motion:
Q = Qo + O sinQge (111)

then

-

b = Vo - L cosQg8 , (112)
Qs

and the perturbation term in the Hamiltonian will change:
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(&)
cosmp » cos | npg - | — ) cosQg8
[ Qs

~

nQ
= E JK (——) cos[nypg + kQSB]
Qs

K

(113)

Each value of k corresponds to a different satellite resonance line. The
resonant condition becomes:

k
+—9—s-, k=021, 2, 3, ... (114)
n

O
1
518

The strength of each line is determined by:
Jk(nd/Qs) - (115)

Figure 6 shows how the strength will vary with the order k = nAQ/Qg
where k is the distance from the resonance in units of Qg/n and with the
depth of modulation né/Qs expressed in the same units. In general the effect
will be worst when Aé = Qg, 2Qg, 3Qs, etc. and will drop to 30% when either
AQ orx Aé becomes larger than 10Qg/n. The suffix v in the plot is just k.

4y (x)
w
o
x
-1 " 8
nAQ 5 ". .w -
QS %
) S
% EEX ;
6 VAVC)
- \ad
8

zo 2 e 65 10 2 s 1z 1 2 NI —>

J,(x) against the plane v, x

Fig. 6 The variation of the Bessel function with distance
from a resonance and with depth of modulation (with
acknowledgement to Jahnke, Emde and Losch, Tables
of Higher Functions, pub. B.G. Teubner, Stuttgart).
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This is nevertheless a rather considerable extension of the influence of
a single nonlinear resonance. In the worst case, when the depth of modu-
lation is about 10Qg. The single line is split into about ten other lines of
comparable strength.

Each satellite line generates its own set of islands in phase space, so
that spacing can be reduced by an order of magnitude. Each resonance is
narrower by Jk(né/Qs) but as Fig. 6 shows this is a factor of the order of
1/3. The consequence is that the Chirikov threshold is reduced by a factor of

3 or so.

14, F (0] FECTIONS

We are at the end of a long road and in the last few miles have aban-
doned some of the luggage containing the rigour of mathematics to speed to
our goal. Our conclusion is not to present a neat analytic expression into
which one may plug field imperfections and obtain beam lifetime but to out-
line a method to arrive at this result. What is offered is a means to bypass
the perhaps prohibitively expensive computer simulations needed to prove
stability.

Previous attempts to predict lifetime on the basis of nonlinear field
content have often foundered by including neither the concept of overlapping
islands nor the catalytic effect of ripple or synchrotron motion. When both
of these ingredients are included it turns out that the nonlinear detuning,
a, plays a crucial role in determining machine performance. This detuning may
be due to effects other than the nonlinearity studied like beam-beam or ion-

beam effects.
The scenario then is as follows:

i) Choose an order of resonance too high to be avoided by tuning Q.

ii) Calculate the nonlinear detuning due to ALL forms of non-
linearities.

iii) Invoke Qg to find the spacing and strength of the resonance lines.

iv) Calculate the Chirikov limit, and if it is exceeded go on to calcu-
late diffusion rates.

v) Calculate the growth per crossing.

vi) Assume crossings are uncorrelated because of Qs.

vii) Sum the growth rate in random walk fashion to get a diffusion rate.

If this method proves to be effective one would expect a lifetime of
24 hours for a beam-beam effect in the CERN SppS storage ring7) , ten minutes
for ion-induced resonances in the CERN Antiproton Accumulator (Ref. 8), and

perhaps only a few tens of seconds for a large ring with inadequate power



- 69 -

9)

supply filtering The experience found in the Refs. 7 to 9 suggests this

may not be far from the truth.

Those who are already expert in the field may scoff at an attempt to
describe beam diffusion ignoring the second transverse degree of freedom
which changes the topology of the problem. Nevertheless, the numbers seem to
fit and anyone with ambitions to include both transverse planes will find the

next Section contains the prescription for this.

15. E (o WO D NSIO SV OTION

The linear motion in one transverse degree of freedom is a circle in
(J1,91) space. The original Hamiltonian only included terms proportional to
p2 and to x2 coming from the transverse distribution of Ag for a multipole
(Eq. 10) remembering that m = 2 for a quadrupole and a normal orientation

gives only the imaginary terms. We find:
Px 1 x2 Pz z
H=—+<——k——+2—+k§—. (116)

We may transform these coordinates into action angle coordinates and
remove the s dependence of H, Jx and J; just as in the one dimensional case.
In the case of one degree of freedom, plus s the azimuth, the particle was
confined to a torus. Slicing the torus at any azimuth gave a circle. With two
degrees of freedom the "slice" will produce a four dimensional surface which
becomes a circle when projected on either (Jx,Yx) plane or (Jz,Yz). Either Jy
or J; is a horizontal plane when plotted against (Yx,¥z) in a "hill and dale*

fashion.
Now we move on to include other multipoles. Equation 10 tells us we

should include in the Hamiltonian all the terms in the homogeneous polynomial

expansion of:
(x + iz)n | (117)
We should select only real terms if the 2n poled magnet is in normal
orientation and only imaginary terms if the magnet is skew. Thus a normal
sextupole will give two terms:

x3 - 3xz2 (118)

while a skew sextupole will give:
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3x2z - z3 . (119)

Now we can apply all the tricks of perturbation theory to be found in
Sections 5 to 7. We simply must write two element vectors for Q, ¥, J and n
taking dot products to form terms like n-¥- One element is for the x plane,

the other for the z plane.

Wwhen we come to Fourier analysis there will be two indices, ni for the
phase angle Y4 and n; for Y, . The denominator of Eq. 66 which defines a
resonant condition becomes:

niQx + nzQz - m =0 . (120)
The resonances determined by this condition are the familiar mesh of

lines in the working diagram (Fig. 7). If m{ and m2 have the same sign they

are sum resonances and if they are different, they are difference resonances.
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Fig. 7 Typical working diagram with sum and difference

resonances to third order (Ref. 3).

The Hamiltonian, truncated to include just the resonant term (Eq. 67)

will become:
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Hy = Ho(J3) + Rug, gel(P1¥xtnz¥z-me) (121)

Defining:
nipy = ny1¥x + na¥; - mo (122)

we can freeze the motion with a generating function reminiscent of Eq. 68 but
with an extra term.

F2(¥,J4,8) = (n-¥ - m8)Jg,x + Y,J4,7 - . (123)
We now find a new Hamiltonian:
H= (n.Q - m)Jx + Q;J; + RUgg(J) + RU-  cosngy . (124)

We also find on making the transformation from (J3,¥3) to (J4,p) that:

$y = ¥y (125)
Jg,x = n1Jg,x (126)
J3,z = n2dg,z + Jg,z - (127)

The invariants of the motion whose conjugates are absent from the Hamil-
tonian are:

H, = constant (128)

J4z = J3z - (n2/nq)J3zx . (129)

Only opposite signs of n{ and n; will ensure stability. Thus difference
resonances are stable but can couple the two planes while sum resonances are
unstable.

The motion is difficult to plot or imagine. The exchange of J components
ensures that particle simulation plotted on a single phase plane will not
have a continuous path but appear as a halo of dots as J breathes. We no

3) has suggested

longer see undulations around a closed circle. However, Ruth
that if one plots either Jx or J, as a function of Y4 and ¥, to form a moun-
tain range plot, one reveals the modes of distortion characteristic of the

indices m¢y and m; (see Fig. 8).
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Fig. 8 A plot showing an invariant surface (H = constant) as a function

of phase variables in both transverse planes (Ref. 3).

16. HREE DIMEN ETIC F

At the outset I warned that some of the approximations made to the
Hamiltonian in Section 2 might need to be reconsidered for small rings where

the magnets are short. In this Section we discuss why this is so.

We are all taught very early in our initiation to magnets and accelera-

tors that the field measured by a long coil passing right through the magnet

jﬁ Bdf

will satisfy Laplace's equation in two dimensions and hence the particle will
see an integral as if there was merely an Ag component. One would not
therefore expect any terms in the Hamiltonian other than those of Eq. 10 even

the magnet was short and consisted almost entirely of end field.

Two things spoil this simple picture. The first is that the suffix, s,
indicates a direction along the particle trajectory and not parallel to the
axis of the multipole field. Strictly

wm>

Ps = P (1 + g) (130)



AS=K-§,<1 +§>. (131)

If the particles trajectory is expected to follow a curved path, as in a
bending magnet, we must somehow obtain an Ag (also Ax, Az ) expression from

the purely axial Aj.

Secondly, the particle may well be focused (or defocused) as it passes
through the end field of a magnet, so that the betatron amplitude has a
chance to change. If the magnet has an aperture which is comparable to the
length we should really examine A, at each point in the fringe field in
computing the Fourier coefficients driving resonances. An example where this
turns out to be important is the end field of a quadrupole. The Az component
must have the symmetry of a quadrupole in polar coordinates, cos28, but it
can have a radial variation normally associated with an octupole in the two

dimension case. Locally

Ag = f(z)r* cos28 . (132)

f(z) reverses sign in the fringe field but if beta has changed in the mean-
time this would contribute to the Fourier term driving a four order

resonance.

I will not attempt a comprehensive treatment of these three-dimensional
effects here but merely warn that they should not be forgotten in the design

of small rings of large acceptance.

17. NC ONS

We have covered all the basic nonlinear theory related to single-parti-
cle behaviour and in so doing identified a link between the specification of
magnetic field quality and beam lifetime. There are also nonlinear forces on
the beam due to collisions with an oncoming “target beam" in a collider or,
if the particles of the beam are negative, with the space charge field of the
neutralizing ion cloud. The potentials due to these effects are usually
richer in high-order multipole fields at the beanm radius. However, I shall
now leave other authors to take up the baton in this relay race from alter-
nating gradient focusing toChirikov diffusion.
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CHROMATIC EFFECTS AND THEIR FIRST-ORDER CORRECTION

Bryan W. Montague
CERN, Geneva, Switzerland

ABSTRACT

The momentum dependence of accelerator properties has become increa-
singly important with improved performance. With the advent of high-
Juminosity storage rings the basic concept of chromaticity has had to
be generalised to take into account the local chromatic perturbations
of the orbit functions. The first-order theory described here enables
lattice parameters to be chosen so as to facilitate chromatic
correction, and also provides insight into the origin of higher-order
effects.

1.  INTRODUCTION

Chromatic effects in accelerators arise because the focal properties of magnetic lens
systems depend on the particle momentum, in close analogy with the corresponding effects in
classical optics. In the early days of A.G. synchrotrons chromaticity, i.e. the variation
of betatron tune Q with momentum, was not a matter of serious concern. However, the
situation changed with the increase in intensity of accelerated beams, resulting in the
appearance of collective instabilities, in particular the head-tail effect, and making
necessary the correction of the natural lattice chromaticity. Considerable refinement of
correction methods was introduced in the CERN ISR, in order to accommodate high-intensity
proton stacks of large momentum spread within the limited space of the tune diagram free of
lTow-order nonlinear resonances.

Up to this stage chromaticity had been considered as a single number, the average of
chromatic effects and their corrections around the circumference of a machine. With the
advent of high-luminosity electron-positron storage rings using low-8 insertions, it became
evident that the concept of global chromaticity was inadequate to describe the true
situation. In contrast to a regular lattice, where the chromatic effects are reasonably
well distributed, the strong quadrupoles of a low-B section generate large local chromatic
perturbations of the betatron motion, as well as contributing to the overall chromaticity.
Since it is not practicable to correct these chromatic effects close to their source, one
js led to study chromatic effects in terms of first-order perturbation of lattice functions
for off-momentum particles. First formulated by Zyngierl), this approach as elaborated
by Montaguez) is used as the basis for this lecture.

In Section 2 we discuss the basic principles of chromaticity correction and
demonstrate the need for a more general approach in the presence of strong localised
sources of chromatic errors. Section 3 describes a first-order chromatic perturbation
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formalism which yields a clear physical picture of the effects in one betatron phase
plane. In Section 4 this is extended to two dimensions and used to optimise linear
parameters of the machine lattice for correcting chromatic errors. A simple concentrated
correction scheme is shown to be impracticable and leads to a discussion of the criteria
for smooth distributed correction.

2.  BASIC IDEAS

The definition of chromaticity Q' used here is :

¢ == . (1)

where § = Ap/pg is the relative momentum deviation from the nominal pg. A definition
sometimes found in the literature is :

dq _ Q'
d

_Po !
£= Qo dp Qg

The dispersion, i.e. the variation x. of the closed-orbit position with momentum §,
is commonly defined in two ways, viz. :

BXQ
DX = 36 (2)
X
or Ny = GJ- s

and to lowest order Dy ~ n. The coordinate x is taken to be the horizontal transverse
direction, where the dispersion is an intrinsic machine property; vertical dispersion,
normally arising only from errors, may be similarly defined with the appropriate
coordinate. In earlier times the symbol ap was used for the dispersion; it fell out of
use due to the inconvenience of adding subscripts.

In classical optics, chromatic aberrations of lens systems can be corrected, at least
partially, by using multiple elements of glasses with various refractive indices.
Unfortunately there is no such equivalent in charged-particle focusing systems produced by
Laplacian fields; magnetic quadrupoles have a fixed variation of focusing strength with
momentum. From the definition of the quadrupole strength parameter :

- 8238
K= p 3x

follows immediately the variation of K with momentum :
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8K _Bp_ g
Ko Po ) (3)

Using the well-known formu1a3) for the first-order tune variation AQ due to gradient
perturbations AK(s) :

1 2nR
AQ = o4 [ 8(s) &K(s) ds
0
we obtain with Eq. (1) and (3) :
l 21TR
Q'= - 37 | B(s) Ko(s) ds (4)
0

where B(s) is the betatron envelope function. This gives quite generally the first-order
global chromaticity of an uncorrected machine.

2.1 FODO lattice

As an example we take a regular machine consisting of N periods of FODO lattice, each
of length L and betatron phase advance u. In thin-lens approximation, which is usually
quite accurate, it is straightforward to calculate the transfer matrix over one period
between the mid-points of the quadrupoles, and to equate corresponding elements to those of
the Courant and Snyder matrix3) between symmetry planes :

cosu Bsinu

M= --% sinu cosu

Then with quadrupole length ¢4 < L, one finds :

Ko2q =-§sin4§ (5)
L
Bmax = (6)
X 2 tan %-(l-sin g-)
L
Bmin = M (7)

2 tan-% (1+sin 5 )

where Bpaxs Bmin correspond to the matrices taken from F to F and D to D quadrupoles
respectively.



- 78 -

Now in thin-lens approximation :
(KoJF = -[Kolp =Ko >0,

and, neglecting the weak focusing effect of dipole bending magnets, the integral in Eq. (4)
can be replaced by a sum over N identical periods, since N = 27R/L. Hence :

} %;-% (Bmax[KolF + Bmin[Kolp) %q

"

Ql

N
27 (Bmax - Bmin) Kotq -

Using Eqs.(5), (6) and (7), together with Nu = 2nQ, we have :

We see that for small phase advance u » 0, Q' > -Q, and for a typical value u = /2, we
have Q' = -4Q/m, not very much different. Large, high-energy accelerators and storage rings
necessarily have large betatron tunes, in order to keep the aperture requirements within
acceptable limits. A similar situation occurs in dedicated synchrotron-light sources, where
the particularly strong focusing required to obtain low beam emittance and high brightness
results in relatively large values of Q. In both types of machine the natural chromaticity
is inevitably large and requires careful correction.

2.2 Local chromaticity correction

The only practical method of correcting chromatic effects makes use firstly of the
variation in closed-orbit position with momentum, given by the dispersion Dy in Eq. (2),
and secondly of the property of a sextupole lens that particles traversing off-axis
experience a quadrupole gradient proportional to the off-axis displacement. The combination
of these features results in an effective quadrupole gradient which, in principie at least,
can have an arbitrary first-order momentum dependence, and can therefore be used to
compensate the natural chromatic properties of the quadrupoles.

From the definition of the sextupole gradient parameter

2
K =28
po 9Xx

one sees that the equivalent quadrupole strength for particies with momentum error & is :

AK = Dy Ko' &
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which, by analogy with Eqs.(3) and (4), yields the chromaticity integral

Q' = -+ | 8(s) Wols) - Dx(s) Ko'(s)} ds . (8)

which results in the integrand of Eq. (8) vanishing identically, leading to Q' = 0.
Strictly speaking this implies that the sextupole fields must be coincident with the
quadrupoles, which is not normally very convenient. In practice a very good approximation
to this situation is obtained by placing a sextupole close to each quadrupole.

2.3 Low-B insertions

In order to obtain high luminosity in colliding-beam storage rings it is necessary to
focus the beams down to very small cross sections, which requires very strong quadrupoles in
the vicinity of the collision point. On the other hand, the quadrupoles cannot be too
close, since space is required for the detector. The low value of g* at the collision
point, together with the distance to the quadrupoles, results in a large value of B at the
quadrupoles. There is thus a large contribution to the integral of Eq. (8) arising from
large values of both g and Kp.

The problem is compounded by the need to have Dy = 0 in this region, in order both
to maintain a high Tluminosity and to avoid an important source of synchro-betatron
resonances. It follows that Tlocal correction is not possible, and the chromatic
contribution from the low-g interaction regions can only be corrected in the main arcs of
the machine lattice, where the dispersion is non-vanishing. It is then evident from Eq. (8)
that, to make Q' = 0, the value of Kg'(s) has to be increased above that necessary for
local correction of the lattice quadrupoles.

It is now easy to see that we have a machine in which the focusing strength is almost
everywhere momentum-dependent, despite having Q' = 0. This results in a chromatic mismatch
of the betatron envelope functions for off-momentum particles, extending in general all
around the circumference. In large, high-luminosity storage rings this mismatch can be
large and leads to a number of undesirable side effects, in particular to higher-order
variations of betatron tune with momentum and reduction of the effective machine aperture
for stable orbits. Considerable insight into these effects can be obtained from first-order
calculation of the chromatic perturbations.
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3. CHROMATIC PERTURBATION EQUATIONS

The motion of an ensemble of particles with a momentum deviation & = Ap/p may be
compared with that of an ensemble having zero momentum error by assigning two distinct sets
of Twiss parameters B, a, and phase advance ¢ :

8(6)’ a2
8(0)9 @)

"
Q
—
(=)
~

-

$2 = ¢(6)’
¢1 = ¢(0),

B2
B1

n
Q
—
(e}
~
-

in each plane. The relation between the two sets will be determined later by boundary or
symmetry conditions.

Considering only one plane for the moment we define :

AB = By - B, B = VBB
Ap = ¢ - b1, 0 = ($2%4,)/2 (9)
and use these to define the chromatic variables
B2 - By A
B=—F = s (10
/8.8, B )
- B
A = a2B1 0182 . (11)

o
Additionally we can define the difference in the local focusing gradient parameter :
AK = Kp-Ky = K(8)-K(0). (12)
A1l the above parameters are, of course, functions of the position s in the machine.

From the definitions above and using the well-known relations :

do _ 1 d8 _ da _ . (1+a®)
ds = B> ds - "o and g = KB B i
we obtain directly :
A B
G =g (13)

and, after a little calculation :



B
Bl (14)
g—é‘—= MK+28%§L . (15)
In an achromatic region, where AK = 0, it follows from Eqs. (14) and (15) that :
d_ (a2 4+ 82) =0 (16)
ds N

and that (A2+B2) is therefore invariant.

The equations so far are exact and do not involve any assumptions about the variation
with & of the quantities defined. This makes it possible, by tracking the chromatic
functions through a machine for various momentum errors 6§, to estimate the importance of
higher-order variations in 62, 63, etc. For further discussion it is convenient, however,
to introduce some approximations for small perturbations. If we define :

Ao = 0g - aj

we obtain from Eq. (11) :

B1 A AB
A=y/82-Aa-aIE§=‘Aa-aB—' (17)

if ﬁg and %ﬁ are small. It is worth noting for future reference that, for A8 = 0, the

approximation in Eq. (17) becomes exact. If, as a further approximation, we take*)
(By + B2)/2 = VB1By it is easy to show that :

d s -
and that :
dA
@ " g2aK + 2B . (19)

If AK = 0, Eq. (19) becomes exact. Finally, without approximation, Eq. (14) becomes :

ala
© |

= -2A . (20)

It will become apparent later that ¢ is a more suitable independent variable than s in the
present context.

* The arithmetic and geometric means differ by only 2% for Ag/8 = 0.4
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From Eqs. (18) and (19) we can write :

%; (200 + A) ~ 8%AK (21)

and in achromatic region, where AK = 0, 2A¢ + A is invariant in the above approximation.

Some of the above considerations were discussed by Autin and Verdier”) in a more
general context of 1linear perturbation theory. In a specific application to chromatic
effects, Zyngierl) obtained the same perturbation equations by a somewhat different
method, using a complex number representation.

Equations (19) and (20) can be derived from the Hamiltonian :
H(B,A,5) = A% + B2 + 8%(¢) oK(s) B (22)

with A and B the canonical position and momentum coordinates respectively. In an achromatic
region AK = 0, the Hamiltonian equals A%2 + B2 and is invariant as previously noted. The two
first-order equations (19) and (20) yield :

el ian=0 (23)

with an identical equation for B. Thus in an achromatic region A and B oscillate in
quadrature at twice betatron frequency. They can be considered as representing a chromatic
mismatch of the off-momentum betatron envelope function with respect to that of nominal
momentum.

The chromatic variables have so far been defined with respect to an arbitrary momentum
error 6. It is convenient to normalise these variables to § by defining formally :

g - Lim [:l . B(8) - 510!']
§+0 § /8(5) 8(0)\

and similarly for A, &K, A¢. The invariant (for AK = 0)
1
W=1 (A% +82) /2 (24)

is dimensionless, and in the normalised form is an absolute measure of the strength of a
linear chromatic perturbation. The factor 1/, is a convention (from Ref. 1) arising from
the oscillation at twice betatron frequency. It is omitted by some authors. If W2 s
expressed in full, using the definitions (10) and (11) it is seen to be formally analogous
to the Courant and Snyder quadratic form3).
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3.1 Simple examples

It is evident that in an idealised machine which is everywhere achromatic W is
identically zero. To illustrate the situation in a real machine with Tow-8 insertions it is
instructive to consider two simple models in thin lens appoximation.

For a regular FODO lattice we use Egs. (3), (6) and (7), and by logarithmic
differentiation obtain the normalised chromatic variations :

- u
1 éﬁ o1 tan 2
§ g cos ;
(25)

1

1 AE 1 tan 5 )
8 ¥ cos X
2

Both o and Ao vanish because of symmetry. For u = m/3 we have :

<

1 -1 1 -2
8 3 8 3

and

m)lg
»
WL >

with values of W = /g, 5/6 respectively. Thus a single lattice period uncorrected for
chromaticity generates a value of W of order unity. A simple two-family sextupole
arrangement can reduce this to zero so that the lattice contribution to W vanishes to first
order.

As a simple model of a low-8 insertion we consider a single thin focusing lens

distance s from the interaction point, where the envelope function B* is assumed not to
change with momentum. The value of o just before the lens is :

In a typical low-g insertion the first quadrupole changes a by about twice this amount and
the value after the lens is :

a4y = 0 - Bka

where 8 = gx(1 + 52/8*2) is the value at the lens and k =-Ko2q < 0 for a focusing
lens. Since we assume B* fixed the change in a4 due to a momentum error § is :

Moy = - Bok = - Bk 2K = ks,



whence

Aa+=(a_-a+)6=-%§:-6.

From (17), since B* and 8 do not change, normalising by § gives :

Bt 25
A=— = R
and the contribution to W is :
s
w____ .

For a LEP physics insertion, s/g* = 50 vertically. This illustrates how strong is the local
chromatic error introduced by the first Tow-8 quadrupole compared to that of a normal
Jattice, and justifies considering the latter as relatively achromatic in the subsequent
sections of this text. The exact value of W in the vertical plane is somewhat reduced in
practice since a4 is less than (-a.).

4. TWO DIMENSIONS

The methods of Section 3 can readily be extended to treat the vertical and horizontal
planes together, in order to take account of the fact that sextupoles act simultaneously in
both planes. For this purpose we introduce the two-dimensional normalised "invariant" :

1 2 2 2
W=3 B2 + BR + AZ + AR , (26)

- where the normalised By, Bp, Ay, Ap, are defined exactly as before, independently
in the two planes. The value of W is evidently a measure of the overall chromatic error in
both planes.

At any position where the dispersion Dy does not vanish, a sextupole acts as a
quadrupole for off-momentum particles and therefore introduces a AK. It is evident from
Eqs. (14), (15), (18) and (19) that AK changes A but not B, and in both planes. The changes
in A and Ay for & = 1 due to a short sextupole of strength K'# are given by :

"

ah - Bh K'2 Dx

av=BVK'2DX=-#-ah

(27)

By
Bh
value of W which can be minimised with respect to ap. This "optimum" W :

Replacing Ap by (Ap + ap) and Ay by (A, - ap) in Eq. (26), we obtain a new
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A A 2 1
(ByAn *+ BhAy) ] /2 (28)

_1
o "2 [BV MEUIRNTY IS

is the lowest that can be obtained for given B and A with a single sextupole, or with a
single family of sextupoles whose members are spaced by integer multiples of = in vertical
and horizontal betatron phase. The corresponding sextupole strength required is :

_ BhAn - BvAy

i Dx(Bﬁ + 33) (29)

(K'2)op

4.1 Choice of linear lattice parameters

Sextupoles are usually located close to the F and D quadrupoles of a FODO lattice in
order to decouple the effects in the two planes as far as possible. We adopt this
constraint, which fixes By, Bps and seek conditions on B, A in the two planes to make

Wop in Eq. (28) a minimum.

The examples of Section 3.1 demonstrate that it is legitimate to consider the major
chromatic perturbation as originating in the low-g quadrupoles and propagating into the
main lattice almost unchanged except in phase, as shown schematically in Fig. 1. It follows
that, in each plane, B and A at any given point in the main lattice are just functions of
the phase advance in the respective planes from the low-8 quadrupoles to that point.
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Fig. 1 Variation of chromatic perturbation W and dispersion Dy near the interaction
region
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We consider Wop at the first sextupole in the reguiar lattice and write Eq. (28) in
terms of By(éy)s Bn(én)s Ay(éy) and Ap(éy). A minimum of Wop with respect
to both phase advances ¢y, ¢ occurs for :

B 2y = 8 2y =

2 2
provided that both %;5 (N%p) and 2;5-(w20p) are positive definite.
v h

After some algebra one finds a unique solution corresponding to :

With these conditions Eq. (28) reduces to :
27 1
1 (BvAn * BnAy) /2
(Mopdmin =5 + | ————~— 31
op)min =% (82 + 82) (31)

and the required value of K'2 is still given by Eq. (29), either for a single sextupole or
for the total strength of a single "coherent" family as before.

The condition given by Eq. (30) is illustrated in the phase-plane diagram of Fig. 2.
For simplicity the chromatic mismatches for vertical and horizontal planes are superposed
on the same normalised coordinate system (n,n') though the normalisation is necessarily
different for the two planes. The vanishing of B = AB/B in the two planes corresponds to
the common vertical tangent and makes A = Aa. The condition that A, and Ap have
opposite signs follows from the fact that, for an off-momentum particle, a sextupole
focuses in one plane and defocuses in the other, as indicated by the arrows.

In Eq. (31) (Wop)min cannot be made to vanish with a single sextupole family,
since it is determined by parameters of the lattice (By,Bp) and of the low-B insertion
(Ay,An) whose values are governed by other considerations. However, the introduction of
a second family of sextupoles, suitably phased with respect to the first, enables W to be
reduced to zero in first order.

In general, four chromatic variables describe the first-order behaviour of
off-momentum particles, and four parameters are therefore required in principle in order to
make these variables vanish. Normally this would require four independent sextupole
families but, by choosing the linear phase advances in the two planes appropriately, we
have introduced a degeneracy, which makes it possible to correct the first-order effects
arising from the 1low-8 quadrupoles with only two families. In addition, of course,
provision must be made for correcting the lattice chromaticity, either by appropriate
adjustments to the K' values or by extra families, which latter may anyway be required for
taking care of high-order effects.
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Fig. 2 Normalized phase-plane diagram for the optimum ¢,
and ¢, at first sextupole.

4.2 Concentrated correction

We can illustrate the principles on which the W-matching strategy of chromaticity
correction is based by considering a simple model.

At an interaction point we impose the initial condition that the chromatic errors
there vanish, i.e. W = 0. The low-8 quadrupole doublet introduces strong chromatic
perturbations in both planes which propagate through the remainder of the straight section,
where the dispersion is zero, into the main arc. The chromatic contribution of this part of
the straight section is small compared with that of the low-B quadrupoles. We now adjust
the parameters of the straight-section lattice, together with the matching into the Tow-8
insertion and the dispersion suppressor, such that the phase advances in the two planes
lead to Eq. (30) being satisfied at the first sextupole in the main arc.

In order to distribute the total required sextupole strength amongst several members
of a family acting coherently, the phase advance u per period of the main lattice must

satisfy :

np = (2m + 1)m; m,n integer. (32)
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For our model we assume a lattice phase advance u = yé and choose the simplest configu-
ration n = 3, m = 0, with two sextupole families of two members each. The phase difference
of = between the two members of each family helps to cancel nonlinear resonance excitation
by the sextupoless). The trajectories of the (B,A) vectors in the vertical and hori-
zontal planes are indicated in Fig. 3(b). The radius of a trajectory is 2W, as seen in
Eq. (24), and the polar angle rotates at twice betatron frequency in this representation.
Each of the sextupoles, whether F or D, contributes to reducing W (in steps) simultaneously
in both planes, and after the fourth sextupole W is brought to zero.

Figure 3(c)illustratesa feature which has so far not been discussed in detail, namely
the behaviour of the accumulated chromaticity A¢, which is correlated with A by
206 +A = constant (Eq. (21) with AK = 0). Like B and A, A¢ oscillates at twice betatron
frequency and is negative everywhere in this region, since the large chromaticity produced
by the low-8 quadrupoles (and the smaller contribution from the straight-section lattice)
have not yet been corrected. We now impose a further constraint over and above those of
Eq. (30), requiring not only that A, and Ap have opposite signs, but also specifying
which one should be negative at a given sextupole. This choice is made from the following
qualitative considerations of a second-order effect.

The local value A¢ of the accumulated chromaticity is a measure of how well the phase
advances imposed to satisfy Eq. (30) are maintained as a function of momentum error. Our
choice of normalised, first-order variables has removed the l1inear dependence on §; conse-
quently the non-vanishing of A¢ implies a variation with §2 or higher order. It is there-
fore desirable to arrange that A¢ be numerically a minimum at the locations of the sextu-
poles. Because of the dominant, first-order constraint that A Ap, < 0, this is not
possible simultaneously in both planes and we therefore impose |A¢| = minimum in the plane
in which a sextupole has the strongest influence, i.e. the plane of Bpax. This is the
more favourable case, depicted in Fig. 3(a), (b) and (c).

Although this simple arrangement illustrates clearly the concepts of W-matching, it un-
fortunately cannot be used in practice. The basic reason is clear from the examples of
Section 3.1; to concentrate the correction of the low-g quadrupoles, chromatically the
equivalent of about 50 lattice periods, into two pairs of elements would require exceedingly
strong sextupoles. Such strong nonlinear elements greatly enhance the excitation of
systematic resonances of third and higher order, leading to orbit instability at quite low
betatron amplitudes, where the phase-separation rule is violated due to the strong
amplitude-dependence of phase advance.

4.3 Distributed correction

It is therefore essential to distribute the sextupole correction amongst many members
of each family, the aim being to find arrangements which minimise the strength of the
strongest sextupoles in the machine. The value of W is then progressively reduced towards
the centre of the main bending arc at which point it should be rather small. The symmetry
of the machine then ensures that W = 0 at the next interaction point, consistent with the
initial condition imposed.
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Fig. 3 Example of W-correction with two pairs of sextupoles; a) configura-
tion and constraints, b) loci of the W-vectors, c) accumulated chroma-
ticities Ady, Adp.



- 90 -

The phase constraint of Eq. (32) shows that members of the same sextupole family occur
at intervals of n lattice periods. For m = 0O the phase advance u is a simple fraction of =,
e.g. n/4, /3, etc., and in the design of linear lattices there is normally no reason to
choose more exotic values. In fact there are good reasons to avoid configurations with
m > 0 since this leads to larger separation in betatron phase between members of the same
family. The need to correct the low-8 chromaticity in the normal lattice necessarily
implies local over-correction because of the increased values of Ky', which can lead to
excessive accumulation of phase errors for off-momentum particles if adjacent members of a
family are too widely spaced.

These higher-order effects require more powerful methods for systematic study and are
treated by G. Guignard in this course. However, the first-order theory discussed here has
shown itself to be very useful in clarifying the general principles, exposing the
jmportance of basic lattice parameters and indicating the origin of some significant
higher-order phenomena.
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CHROMATICITY: NONLINEAR ABERRATIONS

G. Guignard
CERN, Geneva, Switzerland.

ABSTRACT

For accelerator designers, chromaticity deals with the variations
of optics parameters with momentum deviations = Ap/p. Differen-
tial bending gives rise to the dispersion of the closed orbit while
differential focusing in the quadrupoles is first seen as a change
in the oscillation frequency and amplitude. Sextupoles placed in
the lattice where the dispersion is sufficient, are used to correct
strong, first-order chromatic effects and this paper on chromaticity
discusses this question. Nevertheless, these sextupole fields
introduce nonlinear forces and additional tune variations with the
amplitude. Furthermore, every quadrupole and sextupole of the
structure induces aberrations to all orders in §. These effects are
first described and methods of analysing and possibly minimizing
them are then presented in this second lecture on chromaticity. The
pertubation theory in the canonical variables as a tool for dealing
with the nonlinearities is outlined. In addition, the concept of
dynamic aperture is introduced. Recent investigations aiming at the
development of analytical or semi-analytical means for estimating
dynamic aperture without tracking are mentioned.

1.  INTRODUCTION

This paper discusses the nonlinear aberrations associated with the chromaticity and
the presence of sextupole fields necessary for its correction. Following a qualitative
description of the expected nonlinearities in momentum deviation and in the transverse
coordinates (x,z), one defines variables allowing quantitative estimation of the
subsequent effects (Section 2). The so-called dynamic aperture, frequently debated and
considered as one of the most interesting concepts, is then brought in. Since the most
powerful method of studying it remains single-particle tracking, the computer programs
able to achieve this are briefly reviewed. However, the main object of the present lecture
is to describe the analytical methods which have been investigated in order to deal with
nonlinearities.

The pertubation theory using the Hamiltonian formalism is a very important tool in
this frame. Therefore, the basic principles are recalled for one-dimensional motion and
the use of this theory for minimizing nonlinear aberrations from sextupoles is explained
(Section 3). The generalization to two dimensions and the analysis of resonances as well
as tune shifts are briefly outlined. The recent efforts, made in parallel with the work on
numerical tracking, to develop analytical or semi-analytical tools to find the stability
limit in the presence of nonlinearities are summarized (Section 4). The possible use of
the Hamiltonian pertubation to calculate the distortions of the invariant tori is
explained and the search for approximate solutions by successive linearization of the
equation of motion is described.
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2. DESCRIPTION OF THE NONLINEAR PERTURBATIONS

2.1 Relevant quantities

Two sorts of nonlinearities are present in an accelerator or storage ring : those in
the energy deviation § = Ap/p and those in the transverse amplitudes x and z. When we are
dealing with the minimization of chromatic effects, we are of course directly concerned by
the former, but the latter are also important since they may be generated by the
sextupoles used for chromaticity correction.

Considering the vector W defined in theprevious chapter on chromaticityl) and
describing amplitude effects, it is clear that every quadrupole and sextupole (actual
sextupole magnets or sextupole-field jmperfections) induces local gradient errors AK to
all orders in &. Consequently, the betatron functions are also perturbed to all orders, in
particular the phase advance ¢y. Hence, if the vector W changes by steps in its
angular component when AK # 0 and rotates with twice the phase advance ¢y in achromatic
sections, to first order in &, nonlinearities in & are necessarily present in addition ;
W-amplitude nonlinearities which are usually weak and W-phase nonlinearities,
which are large and follow the spread in phase advance mentioned above. This can be
visualized by tracking the W-vector through a superperiod which is achromatic to
first order, for instance.

Sextupoles are used for compensating the linear chromatic variations discussed in the
previous chapter and field imperfections are present in all magnets. They are responsible
for nonlinear forces in x and z, which induce nonlinear kicks in the betatron motion.
Direct consequences are the excitation of many resonances, the presence of coupling and
possible blow-up of the beam. As is the case for § nonlinearities, all orders in x and z
can be present in general.

There are analytical and numerical mean52a3) to calculate the compensation of
the linear chromatic perturbation. The computer program HARM0N3)is able in addition to
minimize some & non-linearities (e.g. second and third-tune derivatives) and the
excitation of some resonances.

2.2 Diagnosis means

It is important to have values for the quantities characterizing the nonlinear
effects mentioned in Section 2.1, in order to estimate the quality of a compensation
scheme and the future performance of the accelerator. Hence, numerical diagnosis means are
necessary and the ones which are nowadays most frequently used are listed below :

- The program MAD") can track the vector W trough the structure and give
direct information about its spread with §.

- The same program is able to calculate the curve giving the tune as a function of 6.
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This makes it possible to check the accuracy of the linear compensation (Q' = 0) and
to estimate the importance of the quadratic and cubic terms (Fig. 1). Such a curve is
also able to show at which value of § stop-bands or strong resonances are reached.
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Fig. 1 Example of tune variations with momentum
(LEP with Qy = 70.35 and Q, = 78.20, at & = 0)

Some information on the quality of the compensation scheme can be derived by tracking
with TURTLES) through a section of the machine and plotting phase space
distortions. The experimental observation was that background conditions in PEP
experiments were strongly dependent on the sextupole strengths. For the observed
optimum, the tracking over one superperiods) showed that tails do not develop in
the phase space, in contrast with the other configurations. Tracking is done with
10 000 particles, using a rectangular distribution enhancing the importance of the
tails and spreading over 20 and 10 standard deviations of the transverse and
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longitudinal beam dimensions, respectively. For each element, second-order transforms
are used with no truncation in the cross-terms. An example of LEP resu]tss) (600
configuration) is given in Fig. 2.

An interesting way to have an overall description of the nonlinear effects and to
estimate the performance is to look at the dynamic aperture. By definition, the

dynamic aperture dy and the associated acceptance Ay = dzy/sy describe the
betatron amplitudes at which particles can circulate indefinitely as functions of .
It corresponds to the initial transverse amplitude up to which the betatron motion is
stable, meaning it remains bounded. The condition of boundedness must prevail during
a time comparable with either one damping time or many synchrotron periods for
electrons or protons, respectively.

In principle, the stable region is a volume in (Ex, Ez, &) space, where Ey
are the emittances related to the betatron amplitudes and § is the relative amplitude
of the synchrotron oscillations. To simplify the presentation, cuts of the stable
volume are shown graphically. Fig. 3 gives an example of such a cut with
E; = '/,Ex for the LEP design.

To calculate the stability limit, designers of accelerators rely above all on
particle tracking. Recently, analytical or semi-analytical methods have been investi-
gated with the idea to complement the numerical results and to obtain some useful
information about the dynamic aperture. These methods 7~ 10)  apre based
either on the Hamiltonian formalism and the iterative perturbation in canonical
variables or the successive linearization of the equations of motion. These two
techniques will therefore be described in this chapter.

Since particle tracking remains the most powerful method for studying stability,
we will briefly mention here some of the computer programs for that purpose,
reminding the reader that tracking is treated in another chapterll). In practice
tracking amounts to calculating orbits of single particles in external fields for a
few initial conditions, by approximate integration of Hamilton's equations through
individual magnetic elements. Because of the special nature of the problem, one uses
particular integration methods. The simplest method is the kick approximation, which
treats the nonlinearities as infinitesimally thin lenses. It is used for instance in
the programs PATRICIAlz), EVOL13) and RACETRACKlq); as a special feature,
EVOL includes multiple beam-beam collisions and tune modulation, while RACETRACK
deals with orbit distortions. A second method is based on second-order transfer
matrices which are used in the programs TRANSPORTIS), MAD“) and DIMADlG),
the 1last one allowing for tracking with orbit distortions before and after

correction. A third method exploits Lie transformsl7)

for constructing sympletic
transfer maps to high order (3 or 4) in the canonical variablesl7) and has been
applied extensively in the program MARYLIEla), and later in MAD“). An example

of tracking with PATRICIA is given in Fig. 4.
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- Distortions of elliptically cross-sectioned emittance tori allow one to visualize the
effects of nonlinearities and give indirect information about the proximity of the
stability 1imit or the onset of chaotic motion. Methods for the analytical
computation of invariant surfaces in the phase space have been recently studied.
Similarly to the dynamic aperture, these methods are based on the successive
canonical generating functionsa’lo) and the linearization of the equations of
motiong), but also on the first-order distortion functionslg), the solution
of the Hamilton-Jacobi equationzo) and the perturbation series exploiting Lie
operatorSZI).

3. PERTURBATION THEQRY IN THE CANONICAL VARIABLES

The practical problem to face in the correction of the chromaticy with Tlumped
sextupole magnets is to keep small the nonlinearities in § and the effects of the
transverse nonlinear forces on the betatron motion. This section describes a possible
solution to that problem. It consists of analysing the motion with the Hamiltonian
formalism, calculating characteristic quantities and minimizing them with the available
sextupole strengths (program HARMONQ)); these quantities are mainly the excitation
coefficients characterizing broad resonances and their bandwidth, and the stabilizing
coefficients controlling the tune variations with amplitude and momentum deviationzz).
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3.1 Recap of the basic principles

To illustrate the method, let us consider one-dimensional motion with a nonlinear
force, whose equation can be written :

Y+ K(s) y = ap(s) y(m-1) . (3.1)
Using the betatron variables, Eq. (3.1) can be rewritten :
u" + Q%u = Q2 an g(m+2)/2 y(m-1) (3.2)
and the corresponding Hamiltonian is given by :
H= 3 (2 + pd) + 5 02 ag B(M2)/2um (3.3)

In the more convenient action-angle variables I and ¢, H (3.3) takes the form :

1 21
H=Hy +H =Q+0" a8 ( )

m/Z Cosm ¢ (3.4)

where Hy is the unperturbed Hamiltonian giving the well-known invariant curves of the
1inear motion, i.e. circles in the betatron phase space. The perturbation H,, which is a
function of the variable © used instead of s, describes a nonlinear system which is not
always integrable, depending on the function ay. The problem consists of finding
approximate new invariants and the method used in the Hamiltonian formalism can be
summarized as follows; one looks for a canonical transformation which makes the new
Hamiltonian (called G) independent of & to first order and almost independent for small
amplitudes. This process can be iterated with successive canonical transformations,
pushing the 8-dependence to higher orders.

Let us do now the first step explicitely. The canonical transformation from (I,¢) to
(J,9) is defined by the generating function Stot :

StOt (¢,J,9) =¢J + S (¢’J’e) s (3'5)

with the following relations between the old and new variables

_ 3Stot 3S
I= e =3+ 5,
_ 3Stot  _ as
Y= Tt
3s
6(v,,0) = H(4,1,8) + —2L (4,3,0) . (3.6)

96
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In order to express both H and G in the last equation (3.6) as functions of the
Stot-variables (¢,J), we may use Taylor's expansions and apply the first two equations
(3.6) :

H(p»1) = H(8,d) + BH 35y + ...

G(y,J) = G(¢,J) + 3Gy Sy + ... (3.7)
where 3f[ is a notation for the partial derivative of f with respect to I.

Introducing (3.4) and (3.7) into the last equation (3.6) and remembering that
3Hg1 = Q, one obtains the following relation :

G(¢,J) + 3Gy = 3Sg + ... = Ho(Jd) + Q » 3Sy + Hy(4,J0,8) + dH 1 « 35y + 3Sg + ... , (3.8)

where the underlined terms are to first order in the perturbation.
Since the structure of the machine is periodic over the turn, the functions of

interest are periodic in 6 and ¢ with a period of 2w. It is therefore possible to analyse
them in Fourier's series :

S =n§p snp exp [i(n¢ - po)]

9

Hi= 1 hgp exp [i(n¢ - po) |
nsp
G =n§p gnp exp [i(ne - po)] (3.9)

where spp, hpp and gpp are the harmonic coefficients of the generating function, the
perturbation Hamiltonian and the transformed Hamiltonian, respectively. Introducing the
expressions (3.9) in the first order terms (3.8) and dividing by the phase term which is
in factor, gives for every harmonic :

gnp = 1nQ Spp *+ hpp - TP Spp - (3.10)

The generating function (3.5) must be chosen in order to satisfy (3.10). Let us
therefore solve (3.10) with respect to the coefficients spp of S(¢,J,8) :

. hnp - 9n
Spp = 1 —h—-_—% . (3.11)

The canonical transformation from (I,$) to (J,¥) must remain finite and the
convergence of S implies that spp be bounded.
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When Q is rational, i.e. Q = p/n, resonances of the type nQ-p appear because of the
small denominator in (3.11). The only way to ensure the boundedness of spp is to make
its numerator equal to zero, which means that gnpp = hpp and spp vanishes. In this
case, coefficients Inp of the new Hamiltonian are different from zero and the first
order perturbation theory app]ieszz’zs); the concepts of isolated resonances,
bandwidths, resonance curves and separatrices can be introduced and used for instance in
the optimization of the sextupole correction scheme (see Section 3.2).

When, on the contrary, Q 1is idrrational or at least distant from every strong
resonance line, the denominator of (3.11) is different from zero and the new coefficient
gnp can be chosen freely. To make the new Hamiltonian G independent of 6 to first order,
as desired, the obvious choice is gyp = 0. Indeed, by virtue of (3.8) and (3.10), G will
then contain only higher-order terms in the perturbation :

G(y,J) = aHy1 354 + ... (3.12)

The proof of this statement can easily be given. From (3.4), the perturbation H; and, as a
consequence, the function 3S, are proportional to ap IM/2, Hence, the first term in

2

(3.12) for the new Hamiltonian goes like a“y 1(m-1), i.e. it is to second order in the

perturbation ap and to a higher power in the amplitude.
Successive canonical transformations can then be applied to suppress the dependence
on 8 of G to second, third and higher orders, if desired, albeit the development becomes

tedious.

3.2 Minimization of the perturbation due to sextupoles

As explained in the previous chapter on the chromaticityl), sextupole magnets are
used to compensate the linear perturbation. Section 2.1 of this lecture indicates that in
the presence of these elements, nonlinear effects are necessarily observed. In addition,
it was mentioned that HARMON3) can calculate the 1linear compensation, but also
minimize some nonlinearities. Let us describe now how this program achieves this, using
the formalism recalled in the preceding section.

Let us note first that the approach of Section 3.1 can be and has been generalized
for two dimensions?“s2%) (x and z). The expression equivalent to (3.4) is in this

case :

Iim 1
H o= Hothy = Gl + QT + M 102 1, 2 exp{i [3-K) (0c+0x0)#(1-m) (824020 ]}, (3.13)

where j+k+1+m = N and N is the "order in amplitude" of the perturbation.

Following exactly Section 3.1, a canonical transformation from (Iy,éx,Iz,¢7)
to (Jyx,¥xs,Jz,¥z) has to be defined by a generating function Sgot depending on
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five variables (generalization of (3.5)). The following steps remain the same : expression
of the new Hamiltonian G from H and Stot, Taylor's expansions for H and G, and analysis
in Fourier's Series of the three functions H, G and Stot. However, the equivalent
equations of (3.7) to (3.9) are more complicated, since we need two phases and two
amplitudes, before and after the transformation. Let us write explicitely the coefficients
of the Fourier's series of H;, which are the main characteristic quantities
(generalization for two dimensions of hpp) :

J+k J+m
hjkinp = : P DB (BT (B2
Jkimp = o(N+3)/28, jikiitm! ax(N-1) ‘R R
x exp{i[(3-k)(¢x-Qx8) + (1-m)(62-Qz0) + po]} . (3.14)

The coefficients hgp (C standing for jkim) are calledzz) excitation coefficients
when the indices jklm correspond to a resonance, and stabilizing coefficients when j =k,
1 =mand p =6, associated with an attenuation of the resonance effect by detuning.

Eventually, the harmonics of the generating function defined above for a two-
dimensional motion are given by a relation similar to (3.11) :

oo = i hcp - 9cp
Cp (G-K)Ox + (1-m)Qz-p  °’

(3.15)

in which one recognizes the well-known resonance condition if we stipulate that ny, =j-k
and ny = 1-m.

Let us consider the specific problem of the minimization of the perturbation due to
the sextupoles used for compensating the linear chromaticy. Exploiting the first-order
perturbation theoryzz’z“,zs), isolated resonances can be studied as explained in
Section 3.1. The coefficients hcp of interest are necessarily of order N = j+k+l+m = 3

in amplitude (degree of the sextupole potential).

Hence, the first order perturbation (with gcp = hcp) evidences the existence of
resonances of third order in amplitude. However, second (and higher)-order terms in the
pertubation are also present in the development of the new Hamiltonian (generalization of
(3.8) for two transverse dimensions). These terms contain products of partial derivatives
of Hy and S (see (3.12)) which have the following forms :

hcth-q-Jx(j+k+j'+k'-2)/2 J,(14m+1'4m*) /2

hcth,q,dx(j+k+j'+k')/2 J,(14m+1'4m*-2) /2 R (3.16)

leaving out factors of proportionality and exponential functions. In (3.16), the condi-
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tions j+k+1+m = j'+k'+1'+m' = 3 prevail (sextupoles are considered) and the direct conse-
quence is that the order in amplitude of the terms (3.16) is j+k+j'+k'+1+m+1'+m'-2 = 4.
Hence, sextupoles excite also fourth (and higher)-order resonances. The physical explana-
tion is that trajectory oscillations due to nonlinear kicks propagate around the ring and
do affect the kicks of other sextupoles.

The program HARM0N3) includes in dits minimization process a set of coefficients
hcp (with N = 3), like hig11» hio20 and hjgo2 which concern coupled motion. Contri-
butions to second order in the perturbation are indirectly reduced, since their excitation
terms are made of products of h's (see (3.16)).

It was said in Section 2 that nonlinearities in & of the amplitude beating
(ﬁ—vectors or betatron function variations), and variations in y (or Jy) and in §
of the tunes Qy are always present in a ring containing quadrupoles and sextupoles. The
Hamiltonian formalism provides means to calculate contributions to these different
variations using integrals of the form (3.14). For the amplitude beating, the starting
equation is the first in (3.6), which can be written for both transverse coordinates :

Iy = Jdy + as¢y . (3.17)

Equation(3.17) gives the variationaly and hence the fluctuations of the By function by
virtue of :

Agy _Aly
By Iy T

The derivatives of the phases yy with respect to 6 give the tune variations due to
nonlinear potential and are easily related to the Hamiltonian G by the canonical equations
of motion :

dy
Ay = 3T = 3 - (3.18)

Let us stop for a short while at the equation (3.18). The preceding discussion on G
can be reused in the present context. In the frame of the first-order perturbation theory,
G is restricted to its low-frequency terms (average over the independent variable 8) and
contains resonant and stabilizing coefficients. However, in general, the Hamiltonian G
contains first, second and higher-order terms in the perturbation, i.e. coefficients hcp
(since gcp = hcp) and products of h's respectively. This last property of G holds also
for its partial derivative 3G/3Jy appearing in (3.18), and consequently for the tune
variation AQy.

As a first example, we can now write the expression of the change of Qx which is
independent of the amplitudes Jy:
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. N2000g No200-g . N1ooog N1200-
8Qx = hi1o00 - 4 1 ( zgx - q 4+ " D)
q

. (3.19)

In (3.19), the presence of first and second-order contributions is obvious. From the
definition (3.14), the coefficient hygooq contains Tlinearly the dipole component B,
while hyggoq contains the first derivative B'. In quadrupoles and sextupoles sitting at
positions where the dispersion Dy is not vanishing, dipole contributions will be B'DyS
and 1/zB"DXZGZ, respectively. In the sextupoles, quadrupole contributions are B"Dy6.
Hence, the tune dependence on & and 62 is calculable from (3.19).

A second example concerns the variation of Qy with the amplitude Jy in the
presence of right sextupoles :

h3000q No300- 1 h2i00q M1200-
AQx = 2Jx[h22000 -9 1 ( 3gx -4 4 +3 Qg T q 1) ]
q

. (3.20)

By definition, all the coefficients h in (3.20) are of order 3 in amplitude and
contain the sextupole component B".

Expressions of the type (3.17) to (3.20) allow us to calculate the tune and
betatron variations. HARMON®’ includes in its minimization process the coefficients
th which control the derivatives Q', Q", Q'" and B' with respect to § and the variation
of Q with the amplitude.

To sum up, perturbation theory in the canonical variables makes it possible to

quantify and consequently to minimize some of the nonlinear effects due to sextupoles,
necessarily present in the ring.

4. DYNAMIC APERTURE AND ANALYTICAL APPROACH

It would be ideal to have a closed formula for the dynamic aperture defined in
Section 2.2, in order to make the design of accelerators easier. Even if this seems very
difficult, it is justified to strike a balance between analytical and numerical methods so
as to improve the analysis of the effects and "increase the useful information obtained
per computational cyc]e"ZI).

4.1 Possible use of the Hamiltonian perturbation

The recent investigations using Hamiltonian formalism aimed at the estimation of the
invariant distortion in the presence of nonlinear forces and not directly at the
determination of the dynamic aperture, knowing that both are related in some way. It is
felt indeed that near or above the stability 1imit defining the dynamic aperture, either
unbounded invariants (going to infinity) do exist or the invariant tori cannot be
calculated analytically, because of the onset of stochasticity. As briefly recalled in
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Section 3.1, the Hamiltonian perturbation requires iterations to improve the accuracy of
the determination of the invariants. Consequently, the critical question is the
convergence of this method, mainly close to the stability limit.

Following Section 3.1, the important point is to seek a canonical transformation
which makes the new Hamiltonian G dependent only on the action J. The problem then
consists of solving the Hamilton-Jacobi equation which has the form (see (3.6)) :

G(J) = Ho(J + 3S¢) + H1(¢,J+35¢,9) + 353 . (4.1)

As explained in Sections 3.1 and 3.2, plain iteration can be done in the perturbation
and high order terms are present in the development of the new Hamiltonian. For example,
after two iterations the Hamiltonian G is of second order in the perturbation (Eq. (3.16))
and can be written formally as fol]owslo) for two dimensions :

G = Qxdx + QzJz +m2n Bmn Jxm/2 Jzn/2 . (4.2)

The quantities G, Jy and J; are constants of the motion and G describes to second
order the distortions of the ellipses. The generating function S(¢x,dxsdz5J758)
makes it possible to write the relations between the coordinates (see (3.6) and
(3.17)) before and after the canonical transformation :

by = ¢y + BSJy (oy> Jy, 8) . (4.3)

Since Jy are constants of motion, the first equations (4.3) give the distortions of
the amplitudes (emittances), provided the following equations for the initial conditions
can be solved :

Iyo = Iyo (JX9 JZ’ ¢X0’ ¢Zo) . (4°4)

Some results based on such a second-order perturbation were compared with tracking
resu]tslo). However, it may be difficult to solve the nonlinear algebraic equations
(4.4) and the truncation of third and higher-order terms of G implies the perturbation to
be small enough. Hence, the second-order approach presented here has difficulties to
describe the motion near the stability 1imit and many plain iterations may be necessary to
improve the description, since the convergence becomes slow as mentioned above.

0) were carried out to introduce iterative methods in which

More recently, studies?
the algebraic complexity at each iterationdoes not increase as rapidly as with plain
iteration. In this work, the Newton method is used for solving the Hamilton-Jacobi
equation (4.1). As before (Section 3.1), the linear part of the motion is separated and

the Fourier transform of S (Eq. (3.9)) is taken; but no Taylor's expansions are used. The
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Hamilton-Jacobi equation can then be stated in terms of the coefficients SanO) :

1 2n 2w
i(nQ-p)snp = - (2“)2 [ [ d¢ de exp[-i(n¢-pe)] x
0 0
x [Ho(3+3S4) - Ho(J) - Q3Sy + Hy(e, J+3S¢, 8)], n # 0
1 2n 2w
ip Sop = - (2n)2 £ £ de de exp(ip®) H(¢, J+3S4, 6), P #0 (4.5)

choosing arbitrarily sgq = 0, subtracting Ho(J) and -QaS, on both sides of (4.1), and
using the fact that G(J) - Ho(J) makes no contribution to non zero n (angle independent).
After dividing by i(nQ-p), Eqs (4.5) may be summarized as :

s = A(s) (4.6)

where s is the vector made up of the Fourier amplitudes spp (Eq. (3.9)) and A is an
operator defined by a double integral (Eq. (4.5)). If only a finite number of Fourier
modes are included in (4.6), this equation can be solved by a Newton ijteration under
appropriate restrictions on the Hamiltonian (H, and its derivative 3H;j not too large)
and the phase-space region considered. The interest of this approach is that in the Newton
method the first iterate of s already involves terms of all orders in the perturbation Hy,
in contrast to the first iteration of the plain iteration described above. This implies
faster convergence. In a single-resonance model, the convergence properties were found

to be exce]lentzo)

(three Newton iterations suffice near the separatrix). In a
two-resonance model, the convergence degenerates when the perturbation increases till the

resonance islands overlap, as expected.

Another idea, recently considered21), is exploiting Lie operators in order to
exhibit perturbation series free of small denominators and to generate an averaged
Hamiltonian of given order in the perturbation. This method has been applied to three
particular problems in one dimension; zeroth-harmonic sextupoles and octupoles, quadrupole
field errors and arbitrary harmonic sextupoles and octupoles.

An entirely different way to deal with the question of the dynamic aperture is to go
back to the differential equation leaving aside the Hamiltonian formalism and to find good

approximations for its solution.

4.2 Successive linearization of equation of motion

Let us rewrite the one-dimensional equation of motion (3.1) in the horizontal plane,
with m = 3 since we are concerned with sextupole effects. Hence, introducing a
differential operator L :



& 4.7
L=yt K(s) » (4.7)

equation (3.1) simply becomes :
L[x(s)] - a3(s) x2(s) =0 . (4.8)

Let us try to solve this differential equation by an iterative process of
1inearization9), assuming the nonlinear part as is small (a few percents) as compared
to the linear one. The first approximate solution comes from a first linearization of
(3.1), i.e. :

Lx(®)(s)] =0 . (4.9)
The solution of this purely linear equation is well-known and given in detail 1in Ref. 26.
For the complete solution which must contain the effect of the nonlinear term, we can

write by definition :

x(s) = x(O)(s) + u(s) , (4.10)

and the corresponding equation for u(s) becomes :
L(u) - 2a3(s) x(O)(s)u - as(s)u? = az(s)x(D%(s) . (4.11)

The next approximation consists of dropping the quadratic term in u and this step is
called second linearization :

L[u(®)] - 2a5(s) x(O)(s) u(®) = ag(s) x(D%(s) . (4.12)
The initial conditions must satisfy :
xg = x(9) (0) + u(®) (0)
x'o = x(9)'0) +u(®)'(0) . (4.13)

In general, the initial values can be arbitrarily distributed between x(%) and
u(o), but the choice :

x(%) (0) = x¢ u(®)0) =0

x(9)'(0) = xq" ul®'0) =0 (4.14)

proves to be quite adequate in practice. The linearization process can be continued to
higher level, giving a more and more precise solution.
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As mentioned before, a typical feature of the solutions for the nonlinear betatron
motion is to remain bounded up to a certain amplitude and then to become suddenly
unbounded. The threshold-amplitude is called the dynamic aperture of the system. The term
proportional to x(9)2 §n (4.11) dindicates that, from a certain amplitude onwards, the
nonlinear term will contribute dominantly to the behaviour of the solution. At this point,
a rapid self-amplification will take place. So far, it seems that the effect of dynamic
aperture is a pure large-amplitude effect, whose occurence cannot really be described by
perturbative methods.

In real systems, however, the stability limit frequently occurs at small amplitudes,
before the nonlinear term becomes dominant, so that perturbation treatment is applicable.
This should correspond to another mechanism driving the solution in the self-amplification
regime. To look for such a mechanism, let us start from (4.12). The term proportional to
as x(®) on the left hand side of (4.12) represents a focusing force depending on the
amplitude, which may induce parametric resonances. The term on the right hand side drives
the linear stopband as well as third-order resonances associated with unbounded motion for
distinct values of the phase. The consequence is that, in the general case where the phase
is not on a resonance, the mechanism driving the solution in the self-amplification regime
seems to be the parametric resonances.

Since u(®) s unbounded if the homogeneous part of the solution is unbounded, the
homogeneous equation :

L[u(®)] - 2a3(s) x(®)(s) u(®) =0 (4.15)

contains the whole information about the dynamic aperture, within the approximation of the
second linearization and the assumption that the parametric resonance mechanism prevails.

Let us now discuss the equation (4.15). In general, x(%)(s) is not periodic over
one magnetic period described by the functions K(s) and az(s). Consequently, Eq. (4.15)
can only be reduced to a vector recurrence containing a non-constant transfer matrix :

0 0
(u( )n+1> (u< ) )
=M
0)! n 0)" . (4.16)
u®)’ u(®)"'

However,if the normalized phase advance u/2w per magnetic period is rational, i.e.
p = 2np/q, p and g being integers, x(%) is periodic with a period equal to g-times the

magnetic period and the equation becomes again of Hill's type. The associated matrix over
one new period is independent of n :

g-1

R = M; (4.17)
i=0
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and its elements are polynoms in xo and xo'. The theory of linear motionzs) tells us
that the solution u(®) will be bounded if the following condition is fullfilled :

|Tr(R)‘ <2 . (4.18)

It has to be noted that the condition for boundedness of the motion is an explicit
function of xg, Xo' and can directly be used for an estimation of the stability limit.

In this approach, it was assumed that the second mechanism driving nonlinear
instabilities is the occurence of parametric resonances caused by fluctuating transfer
matrices in the perturbation equation for u(%), Eq. (4.15). These resonances appear at
small amplitudes driving the solution towards higher amplitudes where the
self-amplification takes over. It should be recalled that this mechanism does not
necessarily prevail for all nonlinear motions and all the values of the parameters, like
the strength a3 and the phase advance u of the treated example. As already explained,
rapid self-amplification can take place suddenly at a certain amplitude and chaotic motion
may also arise. This is for instance possible in the two-resonance model, when the
resonance islands nearly overlap. In such cases, the linearization process described above
also becomes difficult.

As an example,the linearization method was applied to a FODO 1attice9) with two
families of sextupoles near the focusing and defocusing quadrupoles, respectively. The
normalized phase advance Q = u/2r is varied from 30/120 to 50/120. Applying the condition
(4.18) leads to a curve xg = Xo(Q) giving the maximum initial value for which the motion
u(®) s still bounded, i.e. the stability limit as a function of the phase (dotted
curve in Fig. 5). This curve is compared with the expected 1imit (full curve in Fig. 5)

and with the resonance fixed-point-]imit22’23)

calculable near the third integer
resonance (the large points in Fig. 5). The expected limit was found by numerical
computation of the exact nonlinear transformation over 10° cells, while increasing xg in
steps of 1 mm until unboundedness was reached (overflow). The fixed-point approach breaks

down if Q is distant from 1/3 by more than about 1/120.

Comparing the two curves of Fig. 5, the agreement is remarkably good for Q-values
between 34/120 and 50/120. Between 34/120 and 30/120, the linearization method (with two
iterates) begins to fail, while below 30/120 it does not succeed in giving a stability
1imit different from zero. Even if the results can possibly be improved by adding more
jterates, it is felt that for Q smaller than 30/120 large amplitude effects and chaotic
motion set the dynamic aperture. Consequently, for these particular Q-values, the method
can not really be applied in the form it has been presented here.

The linearization of the equation of motion and the associated stability condition
offer some advantage with respect to tracking of many particles over a large number of
periods, since it implies evaluating the product of a reasonable number (about 100) of
matrices. This method is being extended to two-dimensional motion and its range of
validity explored.
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Fig. 5 Horizontal stability limit as a function of the normalised phase advance, for a FODO
lattice
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THEORY OF RF ACCELERATION

G. Dome
CERN, Geneva, Switzerland

ABSTRACT
Formulae for RF acceleration and synchrotron motion are derived

from basic principles in the case of an arbitrary RF voltage.

1. ENERGY GAIN AND TRANSIT TIME FACTOR

Particles experience the effect of RF fields when they cross accelerating gaps that
basically produce an electric field § parallel to their trajectories. The gap is the space

between two electrodes provided with a beam pipe, which for simplicity we take as a circu-
lar cylinder of radius a.

Let V(r) be the amplitude of the RF voltage impressed across the two electrodes. When
a particle with electric charge e (which may be larger than an electron charge) crosses
the gap at a distance r from the s-axis (see Fig. 1.1), it gains an energy

AE = e/ﬁs(s,r,t )ds.

T
fa__lo
s
g
Fig. 1.1 - Longitudinal cross section of an accelerating gap

The time dependence of &g is given by
85 (s,1,t) =& (s,1) sin (wppt)

Traditionally, for circular accelerators the origin of time is taken at the zero
crossing of the RF voltage with positive slope. The phase ¢ of the RF voltage when a
particle crosses the middle of the accelerating gap (at s = 0) is called the phase of the
particle with respect to the RF voltage. On the other hand, for circular accelerators in
the Russian literature and for linacs, the origin of time is taken at the crest of the RF
voltage. The phase ¢ in that case is such that ¢ = %—+ ¢. (Strictly speaking, in the
previous sentences, the term 'RF voltage" should be understood as '"RF voltage times the
charge e of the particles'). If we neglect the change in velocity of the particle when

crossing the gap, the time t when the particle is at position s in the gap reads
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W
t=¢+_RFS

t = wRP v

+ and

b .
Wpp vV
where v is the particle velocity in the middle of the gap.

For simplicity's sake we assume that the gap is symmetric with respect to the plane
s = 0; then

w w
AE = efz;s (s,r) sin [¢ + ——VR£ s} ds = e sin ¢fgs (s,1) cos[—%f- s) ds (1.1

By representing the fields for r = a as Fourier integrals along s, one gets

P w I [fBE . Z] +% w

f ?g,s(s,r) cos [%RFs]dSL-O——w;F—; / %5(5’3) cos[———— sJ ds
J. L. 0] 4

+oo

- - w
With V(r) = fgs(s,r)ds = V(0). J, [%F r], this may be written as

—co

= w Io[w;R;F‘ zJ
f t.(sm) cos [ s)as = V() - 1) - w—‘;F—g—- V(a) T(a)
e Llv %

where by definition

+oo

/ és(s,r) cos (“’_51:_ s ] ds

-

T(r) =

4+

f gs(s,r) ds

- 0o

is the transit time factor at r; it is the ratio of peak energy gained by a particle with

velocity v to the same quantity if v were infinite.

T(r) is simplest at r = a, where gs is zero outside the gap. In many practical cases,

a good approximation is obtained when ﬁs (s,a) is considered to be constant in the gap; then

“RE
v

(LRF
RE

[N )
| S—

Ty = [ (1.2)

[T o)
N———r
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Finally,
AE = eV sin ¢ (1.3)

where

copp T wpp T
" Io[‘r;] YRE IU[V ;]
v=9@ - T@ =Vw)-%&—aj‘u@
wpp @ c wpp @
(5 7) 14 7]
/LURF T
with eV > 0. Neglecting the second order variation in r due to IO~L—;;— ;-], we are left
with
v="Va - T(a) for all particles (1.4)
wRF a]
o\ ¥
w a
It is seen that through the transit time factor and the Bessel function IO[—;— -;],

the effective peak voltage V depends on the particle velocity v. This effect will be
neglected in what follows, so that all particles will be considered as experiencing the
same peak voltage.

More precise (but more complicated) expressions for AE can be found in Ref. 1.

2. HARMONIC NUMBER

For some reference particle (also called synchronous particle), the phase ¢ is kept
unchanged (mod 2n) at a value 9 when the particle returns to the same accelerating gap
after one revolution along the ring. This requires that Opp = h wg where wy = 2n/Ty is the
angular revolution frequency of the reference particle and h is an integer called harmonic

number.

Then

w, . Ty = 2vh (2.1)

RF

When the ring is large, w, is small and h may be quite a big number.

3. FINITE DIFFERENCE EQUATIONS

For simplicity, let us assume that RF acceleration takes place in N identical cavities
evenly spaced along the synchrotron ring. Let n be the number of accelerating cavity

traversals by a particle.

Definition of variables (see Fig. 3.1)

Pgs Vs momentum and velocity of the reference (synchronous) particle

tn’ time of nth cavity traversal by the reference particle



Py = Py ~ Pg

8¢ = b = o,

In what follows, & represents a difference taken with respect to the reference particle

at a given time; d represents an increment during acceleration.

Z acceleratin,
-~ cavity £

Fig. 3.1 Definition of variables

Besides the general coordinates (R,0) whose origin is the accelerator centre, each
bending magnet has its own local coordinates (r,6) whose origin is the centre of the
reference particle orbit in the magnet. Any integral with respect to 6 is taken in the

bending magnets only.

Phase variation between adjacent cavities

In order to keep the phase of the reference particle constant at every cavity tra-
versal, the RF phase must be shifted by 2rwh /N between adjacent cavities. The phase of any
particle with respect to the RF voltage is then given by

¢ (t) =/pr dt - he(t) (3.1)

where O(t) is the azimuthal position of the particle. With this relation ¢ is not only
defined during cavity traversals, but it is defined at any time. In particular, for the
reference particle,

d:bs

T " YRE T hug = 0 (3.2)

For a particle with an energy deviation 8y/vg with respect to the reference particle,
the phase is compared to ¢s' If Tr is the revolution period, the variation of 6¢n from one

cavity to the next is
T 2m w
- - X oL, - RF -
S " Tl T Ty by = (T - To)
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But Tr = C/v where C is the orbit circumference and v is the particle velocity. For a

relative momentum deviation &p/p,

8¢, jon a3 @ =k f
ol by definition of the momentum compaction a; a SR Dx(s) de

where Dx(s) is the radial dispersion.

— = JQ e by relativistic kinematics.
v Yo P

Therefore, if w. is the angular revolution frequency of a particle,
Sw.. 8T 1 Sp Sp 1

0 To 42 p p v2

- (3.3)

If n vanishes for some y, this particular energy is called the transition energy Yeps

when o is independent of y, a is equal to 1/Y%r' Finally,

Sone1 T 800 T dnay T 0y

since XY = g2 Sp
Y P

Energy variation between adjacent cavities

Since all accelerating cavities are assumed to be identical, the total RF voltage

produced along the ring is NV. With (1.3) we have

9B
= - = ; R (3.5)
AE En+1 En eV sin % N§ 50+ T de dr

In the righthand side, the first term represents an energy gain which is lumped in the
accelerating cavities, whereas the second term represents an energy gain which is distri-
buted all along the magnets. Although the second term is usually negligible with respect to
the first one, its variation for particles with different energies must not be overlooked.

For the reference particle

3B :
= E - = i - & zs
AEg = bs,n+l Es,n evsin o) - 9g 5t g dedr
To first order,
3B
N _ eV . s _ € zS
i;'(AE - AES) =5 (sin ¢n sin ¢S) zﬂ-gg =t s de d&x (3.6)

*) This definition of n is the same as the one used in Ref. 2, but another definition of
n which differs in sign is also used in the literature.
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But

6x = D (s) - —%’- and  p=-eBr=-e (B,) R (3.7)

where < BZ > is the average magnetic field along a closed orbit:

.1 .
<Bz>—2anBz rdo

With (3+7) the last term of ( 3:6) becomes

egp_ast [ e§p_8<st> sp | P_1 R
" p at rs,Dx(s)de=-ﬂp 3t Rsansoz=—e<BZS>RSp [p--&l—i Rsa
-5 p_R
p["p R] Ry (3.8)

because from (3.7),

. 3<B_> 3<B.> dR' ] 1 dR 1 3<B > R 3<B_> R
P_ 1 z + 2 I . z_, . z_ 1| - (3.9)
P at 3R dt R dt <BZ> at <BZ> aR R °

— mm—

[average magnetic field index + 1] =

Qe

Now we must remember that AE, AEg are gained in different times T r/N, To/N. As next

approximation, E and ES are considered to be smooth functions of t:

T. dE Ty dE
BE » & = » AE_z — —>
N dt s~ N dt
With (3.3),
oo g -ox & Tod T BB T T AR T d6D e Te
s N dt N dt N dt N dt N dt  "p N at
Using the kinematic relations dE =v - dp =er dp , SE =v - §p = wg RS sp :
N 1 d(SE) $p 1 dES d [SE] SE &y Sp .
— - = — ——— - —_— e —— T — —_— + —_—— - —
7 (AE AES) oy It n p oy dt ~ dt \ug wy wg n D Rsp+2nd order terms.
\—p/

which is exactly equal to (3-8), i.e. to the last term of ( 3¢6). Finally ( 3-6) reduces
to
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d E - E Y
NV . .
Fra (—-——;’:—S—J= e2—1T(s.1n ¢ - sin ¢S) (3.10)

The present derivation of Eq. (3,10) is the same as in Ref. 3 (p.156-163); this equa-
tion may also be derived by using the generalized angular momentum T x (5 +e K) instead
of B (Ref. 4). Any correct derivation must take into account the electromotive force
induced by a varying magnetic flux; it happened often in the past that Eq. (3.10) was
either wrongly derived or wrongly stated.

The corresponding finite difference equation reads

[E—ES} (E-ES] eV E-ES
- = sin - sin where = R -
T w0 ) o (sin ¢ ) o0 (P-p.)

(3.11)

Finally, about the set of finite difference equations (3-4)i, (3.//), one should quote
H. Hereward: "These equations are only roughly correct, and it is work to estimate how
good they are' (Ref.4, p. 11).

Betatron electromotive force

The betatron e.m.f. € along a closed orbit appears in (3-5) as

M = eV sin ¢ + £ (3.12)

= -2 .
e = 3thz T de dr

In this integral, the closed orbit should be considered to be fixed with respect to time.

where

Computing the integral first with respect to r , this may be rewritten as
__20
&= s b(r,8) - BZ (x=0) -rde

where r is now taken on the closed orbit x=0, and b(r,0) is an effective magnet width

inside the orbit. Using (3-7) it is seen that

= 3 . =2 .
e &= ¢ b(r,6) - p de T [pﬁ(r,e) de]
or

e & = 21 — [p . b] where b=z<b(R) >= %—ﬂ- b(r,s) + do (3.13)
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b = < b(R) > appears to be an average effective magnet width inside a closed orbit. Since
the orbit must be considered as being fixed in time, the dependence of b on time can
only be due to possible changes in the configuration of BZ when the magnetic field is

increased; and these changes are kept as small as possible. By using (3.7) and (3.9) we

obtain
P d b 153 1 2B p_1R
eé_ . P ob = %P _ =B2_2X2 3.1
n P s TPt where pat B> st p oR (5.14)
and where ideally %% should be negligible.
Since
T T
oL dE_ T dp _ Zr pdp
A TS wRFr=% Ra
(3-12) becomes
dp _ eNV . 12 (3.15)
Rdt—Zn sm¢+2n
Finally, with (3-14),
g —eNVe' gR_.E_d_R. .a_h
Ra‘%"zT“mq’*b[dt rdt ) TPt (3.16)

In this relation the %%'- term should be negligible, while the b-term is (at most) of the

order b %%% , which is a factor b/R smaller than the left-hand side. Therefore, when

b << R (which is the case for all large synchrotrons), acceleration due to the betatron

electromotive force is a small fraction of the acceleration produced by the RF voltage.

4. DIFFERENTIAL EQUATIONS FOR AN ARBITRARY RF VOLTAGE

If higher harmonics are added to the fundamental sinusoidal RF field, in Eq. (3.10) and

(3.11) sin ¢ must be replaced by a more general function g(¢) such that

2n
gl + 2m) = g(¢) and g(¢) d¢ =0 (4.1)

hence

3

g(e) = ZE: (a, sinng + b cos n¢) (4.2)
n=1
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where one can take a; = 1, b; = 0 , since the values of a;, b; are defined by normalization
and by the choice of the origin of time. Eq. (3.10) then becomes

S (E) -2 e - ety (4.5)

which has to be combined with the differential form of (3.4):

SE

agl{ (¢ - ¢S) =-h wy - (4.4)
E

o

Instead of ¢ and 8E/w, as conjugate variables, we shall use ¢ and 8E/(hwg), so that the
elementary phase space area will read

SE SE _
-m; /\(Sd) = thAa(wRFt) = (SEA(St

With ¢ and 6E/(hwg) as conjugate variables, the system @.3) , (4.4) becomes

d (sEY) _ eNv

S0E) = 2 [ow - s69] (4.5)
d = -hH2 2.._11_. & = = 2

It (¢ - ¢»s) h? wg B7E [hwo] where E =y Ep =ymgC (4.6)

With (3.2), the system (4.5) , (4.6) may be derived from the Hamiltonian

__1l.o o _n_ (8B e\
H--Z hfuwg BZyE, [hwo] * TZn re + G(¢) 4.7
where
e a bn _
T = g(¢s) and G(¢) = - /g(¢)d¢ = Z t? Ccos n¢ - Y sin n¢) (4.8)
n=1

H depends explicitly on time through parameters which vary slowly during acceleration.
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5. HAMILTONIAN WITH REDUCED VARIABLES

The study of particle motion can be simplified by using reduced dimensionless vari-

ables y and t* instead of SE/(hwg) and t. Let

dt =K, at*

where K;, K, are slowly varying parameters. (5.1)
SE 1, N2
T

With the reduced variables and reduced Hamiltonian H*, the equations of motion read

dy _ _K oH_ _ oHf de _ K 3H _ M (5.2)
dt* K, 3¢ 3¢ dt* K, 3y 9y :
whence
K 1 n eNV K
* = N oo 2 h2u.2 2 &V Ky
e =g, B g o gy ey g [”’ * G(“’)]
By taking
— h2p,2 - = eV Ky |
hwu EZY_EO Kl K2 1 and h2n Kz" sgn(n) (5.3)
i.e.
2 By |82y ew |}
1. n_ e _ - Lo 5.4
—K_l_-Sgn(n) hu)o EZY—hZTTEO ’ Kz hwo n hZ‘ITEO ( )
H* becomes
2
H* = 2 - sgn(n) [w + G(¢)] (5.5)
oH* _ 3H* _

Fimed points. From (5.2) they correspond to 3 "oy 0

i.e., with (4.8): T +G'(¢) =0 or T = g(¢s) = g(¢) with y = 0.

Because of (4.1), beside o there will be in general another value of ¢ satisfying the

condition g(¢) = I'. Let ¢p be any one of them; for small ¢ = ¢ - ¢g,
[ 2 y3
o + 6@ = [r00 + 660)] - &' G0) $r - 8" 0) 7 -

2 3
*=-sgn(n) [T¢o + G(¢o)] + %;'+ sgn(n) - g'(¢0) %f.+ sgn(n) - g" (¢9) %7 (5.6)

If sgn(n) - g'(¢g) > 0, ¢o is an elliptic fixed point; this is the case of ¢g = ¢s

for ¢ being a stable fixed point.
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sgn(n)-[r¢ + G(¢)]

| I
0 /2 T 3n/2 2T 51/2

In the figure, T =
G($) = cos ¢
g($) = sin ¢

Fig. 5.1 Potential energy as a function of ¢.
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Vanishing bucket (¢

m)
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Stationary

when n < 0;

5

Trajectories in synchrotron phase space
when n > 0, ¢ and ¢, are interchanged.

Fig. 5.2

The complete phase space is wrapped around a cylinder 0 £ ¢ < 2wh.
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If sgn(n) - g'(¢9) < 0, ¢y is a hyperbolic fixed point; this is the case of the other

fixed point ¢4 = ¢u’ which is unstable.

¢s is at a minimum of potential energy; ¢u is at a maximum. When n changes sign,
the two points bg and ¢, are interchanged (see Fig. 5.1). Therefore, when crossing the
transition energy, the RF voltage must undergo a phase jump which puts the particles around

the new stable fixed point.

Separatriz. The trajectory in phase space passing through the unstable fixed point

(¢u, y = 0) crosses the ¢-axis at another point (¢e, y = 0). This trajectory is the bound-
ary between trapped and untrapped motion (or between libration and rotation); it is called
the separatriz (see Fig. 5.2). The phase space domain inside the separatrix is called
bucket; 1its area AS is the longitudinal acceptance of the accelerator.

From (5.5) the equation for the separatrix is

%~ sg(n) [ro + 66) - 14, - G(%)] -0 5.7)

Taking the derivative with respect to ¢:

y % - sgn(n) [r - g(¢)] =0

This equation is satisfied with y = 0 at ¢ = % and with %% =0at ¢ = L Therefore y is

maximum at o (this is also the case for any trajectory.)

Bucket width. The bucket width is (¢e - ¢Lg where ¢e is determined by the equation

ro, + G(s,) = e + G(4) (5.8)
Bucket height. With (5.1),
sE R A ~ y?
[_;] “h sp = K, y where %:-sgn(n) [rqsu + G(¢u) - Tog - G(¢s)] (5.9)
Bucket area (per bunch)
be b .
- * * - - - 2
AS = KzAs where AS = 2] y dé 27 do |1"¢u + G(¢u) T'o G(¢>)| (5.10)
b ¢
Ymr < 0) "

It is not invariant during acceleration.
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Period T, of (large) synchrotron oseillations around the stable fixed point

The phase space trajectories are represented by (5.5) where H* is constant. Let ¢,

¢, be the two phases where y = 0; then (5.5) may be written as

2
2 _sgnio) [re + 600 | =sgn([ 1oy + 66) | ==sen(o) [ros + G |

From (5.2)
d¢ _ 8H* _
dt* 3y Y
hence
ar = 9
Y

and with (5.1),

¢ ¢2
T, = [K|Tg  where Tt =2 ./“2 %% =2 do |T¢1 + G(oy) - T¢ - G(¢)‘_%
$1 ¢y (5.1

For a general RF voltage this expression involves cumbersome elliptic integrals.

6. SMALL OSCILLATIONS AROUND THE STABLE FIXED POINT

From (5.6), the small amplitude trajectories around ¢s are represented by the ellipse

equation

2
1%— +

¢
2

g'(¢s)| . >0, ¥ =1¢- 9 6.1)

It is apparent that all properties of small oscillations around ¢ involve the RF

voltage only through its slope at g-

Period Tso of small synchrotron oscillations

The subscript 0 refers here to vanishingly small amplitudes. With (6.1) the general
formula (5.11) simplifies to

- 27

v
v
y
¢‘F~ lg' (o) 102 Vg (o)

T, = |K1|Tso where T _ =2

G\.
<)

This is independent of the amplitude U as long as the y3 and higher order terms are missing

in (5.6) , which means as long as g(¢), i.e. the RF voltage, is a linear function of ¢.
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With (5.4) the synchrotron tune

is given by

hn eNVg'(¢s) 1 hnenvg' (o)

2 = —h —————— = _— T — ! =—£1—
Qso 82y ZnE, 7n 8%y E where Vg (¢s I (RF voltage) at ¢

(6.2)

Height of a trajectory in synchrotron phase space.

For a trajectory of half width §, the height is obtained from (6.1) as y2 = |g'(¢s)|$2
whence , with (5.1) and (5.4),

NI

T ~ 2 ' ~
()= x5 - o B_YeNVE("’s)‘ .
0)0 hu)o hn ZHEO

Longitudinal emittance. Bunch matching.

The area of a bunch in synchrotron phase space is its longitudinal emittance ES; it is
an invariant by Liouville's theorem. If we call "emittance of a single particle” the area

2nJ in phase space which is enclosed by the particle trajectory,

1
2

1
B 8%y eNvg' (o) |* .

B2y eNve' (4,)
R p2 [ev.s] (6.3)

Bz E
e ) B e |
~ hug hwy | hn 21Eg

The action J is an adiabatiec imvariant, i.e. it stays constant if the parameters in H are
varied infinitely slowly (Ref. 5, p. 154; Ref. 6, p. 110; Ref. 7, p. 234). If at some
time a bunch is matched (which means that its border in phase space is just the closed
trajectory of the outermost particles) then its emittance Es is equal to the single particle
emittance of its outermost particles. After a change of the parameters in H, the emittance
ES is unchanged but the action of the outermost particles has changed slightly and
differently for each particle, which means that the bunch is no longer matched exactly:
therefore the matching of a bunch can only be preserved in the adiabatic sense, i.e. if

the parameters in H are varied very slowly.

7. MOTION IN THE VICINITY OF THE FIXED POINTS

Take the Hamiltonian (5.5 ) with reduced variables:

2

* =4 - sg(n) [w + G(¢)]
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Canonical equations:

[aF fa
e -u
E3

I
<

& = sg(n) [F - g(¢)] ,

hence:

dt* = @ = d¢
Yoo e+ 2 sgn(n)  [re + G(4)]

In the vicinity of a fixed point ¢¢ ,

| &

~
C
Motion around the stable fixed point ¢s

2 = - - 2
y2 = C, - Mgl (6 - + ...
}’2
max
de* = dé

Y Pnax - 18" 61 G - 897

-1 lg' (s )]
t* = - Igv(¢s)' 2 arc cos E (¢ - ¢S)

ymax

or

Y.
(¢ - 0g)= —lg‘/% cos[‘[lg'(q»s)l't{l

Motion around the unstable fixed point ¢,
2= C o+ gt )] (6 -9 )%+ ...

d¢
yerleel - 0%

dt* =

y? = 2H* + 2 sgn(n) [MO + G(%)} - sgn(n) g'(e,) (o - ¢o)é e
7/

(7.1)

(7.2)
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NI=

tk =+ |g-(¢u)|_ log [¢ - ¢u| >t o when ) (7.3)

u

Therefore the motion near ¢ is very slow (it is a fixed point!) This relation may be
inverted as

* Jlg'(%)l t*

¢ -, ve

min
-1 Vg ()]
t* = |g'(s )] argsh | ———— (- o) 7.4)
Yy - u
min
or
o -4 Tmin_ g [\I_—‘l ]
- S ——— S g|(¢ ) t*]
u
Vig' G 1 “
The motion is very slow when Yiin ~ 0.
€ <9 : particle inside the bucket
= - ! 2 = -
c lg' o)1 ¥2sn where RN
- ¢ = 0y ]
tr=lg'(e)l * argch |— (7.5)
min

or

-
¢ = ¢, = ¥pin - h [‘}lg'(%)l t

When Yoin 0 , the motion close to ¢ becomes very slow, and the synchrotron period Ts
becomes infinite. As shown by (7-3) to (7-5), all trajectories are slowed down in the

vicinity of the unstable fixed point.
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8. STATIONARY BUCKET WITH A HARMONIC CAVITY

When the beam is not accelerated but is simply kept bunched at a fixed energy, T = 0 and
the bucket is called stationary. In this case,which corresponds to collider operation, the

frequency of synchrotron oscillations as a function of phase amplitude EJ is given by
*

w
_ s
s T TK
*) )
where as a first approximation ° (see Appendix A, Eq. (A.8));

oo

W = sga(n) - Z a_ cos ng_ - %Jmn@) + 0(P) (8.1)
n=1
when

©

g(e) = Z a sinng¢ , T = g(¢5) =0, sgn(n)- g'(¢s) = sgn(n) Z na cos ng. > 0.
n=1 n=1

Assuming that a; = 1 is the dominant term,

¢ =mn 1if n< 0.

With (8.1), the synchrotron frequency for vanishingly small amplitudes is

o

w;(z) = sgn(n) - Znarl cos n ¢ = sgn(n) - g'(¢s) - Ig'((bs)l (8.2)

n=1

in agreement with (6.2). ,
The relation (8.1) allows shaping the variation of w52 with §. For example, if w52 is to be
proportional to @2, it is sufficient to take a; = 1 and sgn(n) - na cos n¢ =-1 for some

n > 1; then

2 a2 - Ay _m2 - 1(3)? -
o = 20,® - Z o <o = EE (8] 40 (8.3)
If the sign of a, is reversed so that sgn(n) - na cos ng = 1, then
R P P SR S ) OO
o =2 0@ + g e o =2 [1- B (5 oGy (8.4)

*) Jv(x) is the Bessel function of the first. kind of order. v and argument x.
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The latter case (8.4) corresponds to the usual operation of a Landau harmonic cavity,
which increases the relative spread of synchrotron frequencies as a function of ¥. In both

cases the amplitude of the harmonic voltage is such that

a
n

1
a —E

9. FORMULAE FOR A SINUSOIDAL RF VOLTAGE

Formulae are simpler when using the phase ¢ measured from the crest of the RF voltage:

4= 3 sg(r) +@

¢ ='TzLSgn(1") e ¢u =-T2Lsgn(r) % sgn(«’s) = - sgn) - sl

4

sin og ° sgn(r) = |r| = cos ¢,

From (4.2) and (4.8),
g(¢) = sin ¢ = sgn(r) - cosep , T =gle,) = sin o, = sgu(r) + cosgg , (.1)
G(¢) = cos ¢ = - sgn(T) * sin ¢p

Bucket width (cbe - ¢u) where

-1
I S 11 02, ot 9.2
tglo, - ¢, - 39) =15 t8 “’s'[l + a5 t87eg —0(tg'e) (9.2)
52
I Yo 3 - 3 .
From (5.9), 3 2|51n ¢y = g COS ‘psl and, using (5.4 ):

1
2 1

- g2y eNV sin ¢ i
SEV_ R _Eg o |___ S - = Eo 7|BY|g /A0 .
[ wg )_ P~ hug 2 hn 2nEq [1 s cotg ‘ps] hwy 2 hn Qso 1 s cotg ¢g [eV S]
(9.3)
Bucket _area  From (5.10),
(be 1
* = . _ . _ 2 .4
A Z/Z—f dé |¢U sin ¢  + cos ¢, - ¢ sin ¢ - cos ) 9.4)

¢
Y (nr<o)
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As* is steadily increasing with|<p5| . Its maximum value is obtained for o = n/2 (stationary

bucket):
2%

A* =2J2fd¢¢1—cos¢=16
S max
0

Let

A* A %
e e I O T R EER Ry IPO N

S
S max S max

The derivation of the series expansion for o(r) is given in Appendix B.

With (5.4)
E g? eNvV |2
= Lo | BTY
AS 16 hwg | hn 2E, a(r) per bunch [ev.s] (9.6)

Remark: Instead of (9.3), the dimensionless quantity d‘i)/moc is often used. In these

coordinates, we have:

Bucket height

D=

o eNV sin ¢ 3
Sp oo, - S . - sp
myC hn 2nEg } [1 g cotg 'ps] [moc ] ©.7)
Bucket area
h eNV | 2 8
. = oo . SP_ . RFrad
As mycR 16 fn ZvEq a(r) per bunch I:moc (9.8)

Period of (large) synchrotron oscillations in a stationary bucket

Besides the trivial case of a linear RF voltage, a sinusoidal RF voltage is the only
case where it is possible to compute simply the synchrotron period for any amplitude.
With r = 0 and G(¢) = cos ¢, the general equation (5,11) for the libration period reduces

to
é2 ¥
-1 . ar=1l i
Ts* = /2—/ d¢ Icos ¢, - cos ¢| 2 =7V2 ] dy |cos ¥ - cos w| 2 = 4K (sin %) 9.9)
91 b
where ¢ = ¢ - 03 K(k) is the complete elliptic integral of the first kind with modulus k.



Therefore
2 T L0 3 .
ws —[—;‘-K(51n7)] —1-—2'511’12'2'-—3751]1‘*7
~_ 2 L
-1-3 {%] XY [%} -

*2
s =

w

Ji) =1- % sin?

<)o

which shows that the error on the $* term in Eq. (8.1)

(9.10)

-4

is rather small.

o=y

Motion outside a stationary bucket
r=20 G(¢) = cos ¢
sgn (n) cos ¢ = -1 G(¢) = cos ¢, cos (¢ - ¢,)

From (5-5),

9
y2 = 2H* - 2 cos (¢ - ) = (2H* - 2) + 4 sinz[ >

d¢
dt*

Y . 1? 6 -9 1

2
Vi ¢ -
LSRR
2

The motion outside a stationary bucket is a "rotation', the period of which is the time

needed to increase ¢ by 2w :

2m
1
T =
A
1+ [}Jﬂg{] .}/F
\ 2 0

or

T* =

(9.11)
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It follows that

T*+ | 2 log for Ymin ~ 0
Ymin
2m
for y . o>
Y min min
Vi "

When rgln << 1, it plays the same role as cotg-qz)— in (9.9 ); both quantities represent

half the minimum distance to o outside and inside the bucket respectively.

10. ADIABATIC DAMPING OF PHASE OSCILLATIONS.

From ( 6.3):
1
R 2m h3 woz n 4
v=v2T 10.1
E 67y - eN g'(s) (10-1)
and
G}S_ZJ_ 21 h% w ® -3
=== (10.2)
hw b E B2y - eNV g'(s.)
2 2
Y% 2% . c?
where —=c" - = —
32 v RZ
s
and ~
o (SR
2nJ = myp (hw )

is an adiabatic invariant.
If Vg'(¢s) is kept constant during acceleration, the only quantity in (10.1) which varies
(slowly) in a synchrotron is % .

Let us compute

2
T3 3 - ay?
3 Y
i—logl= v 1 . 1 z _1] = lI:_____:I
dy Y 1 Y y Lay® -1 vy Lay2 -1
2 ~ O
Y
2 .2
1 3Y‘cr Y
Y 2 _ 2
Y Ytr
d—10g d >0 when y2 < y2 <342
dy IYI tr tr

<0 in all other cases
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Therefore,when y2 = 3 Ygr s l%l reaches a maximum where

We notice that 2

=<
[&}]
=<
N
e
o]
SNS——
w
>

1
The variation of '314 i.e. of y as a function of vy , is shown in Fig. 10.1.

or w

1 10 102

Fig. 10.1  Amplitude of phase oscillation as a function of Y .

In the figure, Yep = 5.

In case of a constant |¢gl during acceleration, the bucket width |¢e - ¢ul is constant.

From (9-3 ) the bucket height is, for a sinusoidal voltage:

Nil=

A 21 h3 w 2 g
EEL = 2 0 [1 - ¢s cotg gg J
ho E 8%y - eNVg'(s)

bucket

D=
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where g'(q;s) =Cos ¢ = sin e -

The ratio of particle height (10.2) to bucket height is thus:

~

3, 2
(8E) article _ V23 2r h w = 3 i
—B——-—A = — ; 1- e cotg e
2 E 82y - eNVg'(s)
(6E)bucket © s
or, with (10.1), ~ ~
(6E)partic1e _ v

z 2 V1l - ¢ cotg ¢
(‘SE)bucket s s

~

Since this ratio behaves like ¥ , it is maximum at injection when the injection energy is

below v, ‘-/-‘;3- or above v, /3.

In these cases, if lxpsl and V are kept constant during acceleration, particles captured

at injection will stay in the bucket during the whole acceleration process.

Remark: In Fig. 10.1, $ >~ 0 while % +~ o when vy >y tr ;this means that the adiabatic
o]

approximation breaks down in the vicinity of vy o A more refined treatment (see

K. Johnsen, Ref. 2, p.178) shows that ? goes through a minimum while fl% goes through

o
a maximum at transition.

Separatrixz crossing; golf-club

Although the area 2nJ which is enclosed by a particle trajectory in phase space is
an adiabatic invariant, it follows from (9.6 ) that the bucket area As behaves like the
bucket height (9.3 ) and is not an adiabatic invariant, as appears clearly in Fig. 10.1.
Therefore, one must conclude that the separatrix is not a particle trajectory in phase-
space, except when there is no acceleration (r=0) and therefore no time variation of the
parameters in the Hamiltonian (4.7 ). The reason is that, as shown by (7.3 ), the particle
motion along the separatrix is extremely slow in the vicinity of oy 0 therefore violating

the adiabaticity condition; this condition indeed requires that the variation of the

parameters in the Hamiltonian (4.7 ) be negligible during a synchrotron period.

In order to arrive at a qualitative picture of the actual particle motion, we
observe that the reduced Hamiltonian (5.5 ) does not depend on time. Therefore this is
also true for the curves of constant H* in the (y,¢) rlane (see Fig. 5.2), in particular for

the slope of the separatrix at ¢ . This would not be true in the(l%— , q>) phase space
because from (5.1 ) °



- 134 -

— =K, y or y =+ 7 (10.3)

and K, varies (slowly) with time. Since the elementary phase space area %%— A 8¢ 1s
o]

invariant, in the (y,¢) plane the elementary area

1 SE
Sy A 8¢ = R: . E;— A §o
0

. -1 . . V3 -1
varies as K, © . In Fig. 10.1 it is seen that when «y < Yer 7 OT Y > Yo V3, K2

decreases with increasing vy (or time); therefore in the (y,é)plane, areas shrink with
time and the motion appears to be damped. In particular, the separatrix is no longer a
trajectory since it encloses a constant area in (y,¢). Instead, one of the trajectories
which leaves % (or, strictly speaking, which tends to ¢u when t » -») will no longer
come back to ¢u (strictly speaking, tend to ¢u when t + +), but it will spiral
inwards around ¢s ; in other words, instead of being a center, ¢s has become a focus

(see Fig. 10.2). This shows clearly the adiabatic damping of phase oscillations:

~

~ -1 1 ~ -
y shrinks as K, ? , ﬁ%— expands as K,% , and from (10.3) y also shrinks as K,
(¢}

NI

On the other end of the separatrix, the trajectory which tends to 9, must then come from
outside the fish-shaped bucket. As a result, in reduced coordinates the longitudinal
acceptance of an accelerator is not a fish-shaped bucket, but rather has the shape of a
golf-club. In the literature, this effect is mostly discussed for low-g linacs (Ref. 8;
Ref. 9, p.27), for which the adiabaticity condition is worst fulfilled; since for a linac
Yep = s the (y,¢) plane corresponds to vy < Yir in Fig. 10.2.

When v <Y < Yy /3, K, ! increases with time; in the(y,9) plane areas expand with time
and the motion appears to be anti-damped. In particular, one .of the trajectories which
tends to % spirals outwards around g » and the handle of the golf-club is directed
toward the negative y-axis.

In fact, the motion in the(y,¢)plane depicted in Fig. 10.2 as a result of slow vari-
ation of parameters in the Hamiltonian, seems to be more generic (i.e. more common) in
dynamical systems than the motion depicted in Fig. 5.2. Indeed (Ref. 10, p.29-31) it is
exceptional that a trajectory leaving (or arriving at) a saddle point goes to (or comes
from) another (or the same, as in Fig. 5.2) saddle point; it rather goes to an attractor
or comes from a repellor, which in Fig. 10.2 is the stable fixed point ¢g In practice,
the motion depicted in Fig. 10.2 becomes apparent mainly when K, varies fast with vy ,

i.e. (see Fig. 10.1) at low B or near transition.
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Fig. 10.2 - Actual trajectories in the reduced coordinate y,¢ plane.
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11. BACK TO FINITE DIFFERENCE EQUATIONS. STOCHASTICITY

For an arbitrary RF voltage, the finite difference equations (3.11)and (3.4) read in

case of a synchrotron (RS = constant):

_ eV _
8Py ~ OPp T ~, [g(¢n) g(¢s)] (11.1)
- g =L, 11.2
n+1 n N Py h*lsprﬁl ( )
)

where n, Ves Py are slowly varying parameters.

This mapping preserves area in the P b plane. In contrast to differential

equations, there is no (smooth) constant of motion for the finite difference equations.

Fized points (mod 2n): If k is any integer,

o = b * 2wkn, %gt = 8p, = k is a stable fixed point
6, = ¢, + 2mkn, %%2 -sp =k  is an unstable fixed point.

The k # 0 case corresponds to working with the same RF frequency, but with an harmonic
number (h + Nk). Indeed, for a given WpE the synchronous revolution frequencies are such
that

wRF (Swo sh
w = —— — D . e—

h ’ Wo h

to which correspond the synchronous momenta

6p 5(1)0 §h Nk
This means that the vertical distance between neighbouring buckets is p__N In

P, |hn| °

order to prevent stochastic effects (Ref. 11) from becoming important, the ratio ¢ between

the full bucket height and the vertical distance between neighbouring buckets should be

less than 1 (Chirikov's criterion). From (9.7),

4|y eWsines |} g orge
By |hn  2nE, s COt8 ¢g

E_

1

_ 4 |hn eNVsineg 2/—f?————~————-

\ﬁ = N |8y T vk, 1 - ¢ cotg ¢
hn ‘

so that Chirikov's criterion reads, with (6.2):
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Q
-4 3% . g% o
£ =4 N 1 ¢§ cotg g <1

Therefore, differential equations are valid only when Qso/N << 1. For a finite Qso’
the motion near the bucket border becomes chaotic, making the bucket area shrink (Ref. 12);

in practice, this effect is still very small for Qso/N < 0.1.

w_ | op

)

=
+
p=4

complex intermediate fegion

¢

2m

%

u
complex intermediate Yegion

0

Fig. 11.1 Phase space enlarged to several harmonic numbers
at a fixed RF frequency (for n < 0)

Period of small synchrotron oscillations

In the close vicinity of o> the system (11.1), (11.2) reduces to

[2ﬂhn] [Znhn]_l
Nps n Nps n+1

n+l _Pn= - K (¢n- ¢S)

(11.3)
’ne1 " %0 T Pha
where we have put
_ _2mhn .
Pn- —Nps <Spn (11.4)
and
1
Ky = Zﬁﬁﬂ.fy_g_giil ) (11.5)
PsVs
With p defined by
4 sin? %= Ko , (11.6)

the system (11.3) admits of the general solution

. i
¢ " 4 = Re [a elnu] , P = Re [i a2sink- el(n 2)“] (11.7)
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This represents small synchrotron oscillations with angular frequency

W = ey =
so Ty "

N u
Nmoﬂ.

From (11.5) and (11.6) the synchrotron tune for small oscillations is given by

Q
4 N2 sin? (n —%9] = N2K,

The analogous formula ( 6.2) obtained with differential equations appears to be the

eNVg'(¢s) hn eNVg'(¢s)
2rthn — n ——
psvs Bey Ep

(11.8)

limiting case of (11.8) when N » =, i.e. when particle acceleration is evenly distributed
all around the ring with the total RF voltage NV remaining finite.

Adiabatic damping of phase oscillations

From (11.4) an area element in the Pn

A = -
dPn 6¢n

> o plane reads

Zrhn
Np

i

© 8p, N So,

invariant

which shows that the mapping (11.3) does not preserve area in the P plane. All

successive points of a trajectory described by (11.7) lie on an ellipse with area

(11.9)

m |a|? sin u ; by (11.9) this area is related to the adiabatic invariant action J through

Since from (11.6)

we obtain, using (11.5):

2thn| h
Np T 2nJ
s S

-1 Ko \2 v 2 K -2
jaj2 = 2y &b | 20 Koz(l——°) e (1—-3)2
s | Npg 4 S| Npg eVeg'ls) 4
hence
laj = /23 Zn hn fo-E
RZ m v - eNVg'(o) 4 (11.10)

This expression generalizes the expression (10.1) of &

equations.

to the case of finite difference
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12. PHASE DISPLACEMENT ACCELERATION

Empty bucket sweep

For a fixed harmonic number, the RF frequency determines the synchronous revolution

frequency or, because

Sp _ 8wy
n - ’
PS wo

the synchronous momentum of the particles. Let w, and w, be two revolution frequencies
located on both sides of the central revolution frequency wg of the stack, well outside the

stack, with w; corresponding to a higher momentum than the stack (Fig. 12.1).

W, Sp
o Ny
' N
welD m dz)" stack
¢1//4§§::§¢:>
0, N/
NEDZAN

Fig. 12.1  Sweeping an empty bucket through the stack, from w;to w, (n< 0).
With r = sin ¢4 < 0, particles move upwards around the bucket
(when T changes sign, all ¢'s change sign).

’RF

huw,

hw,

Fig. 12.2 Variation of RF frequency with time (n < 0).

If the RF frequency is varied from hwj to hw, (Fig. 12.2), an empty bucket is moved
completely through the stack in the direction of decreasing p; because phase space is
incompressible, the average position of the stack is moved upwards by a quantity equal to
(Bucket area/Horizontal axis period). Therefore, according to (9.8), the average momentum

of the stack is increased by

1
3
ﬁ% ;ﬂgﬁ - a(r) per empty bucket sweep (12.1)

Ap y_ 16
<moc> VA




- 140 -

Since this average momentum increase is small, in order to maintain the beam at
fixed radius the magnetic field BZ must increase so slightly during an empty bucket
sweep, that for all computations BZ may be considered as constant in time. Therefore,
the betatron electromotive force may be neglected in (3.15), which for any particle

reduces to

d eNvV .
RE‘% == sing (12.2)

In particular, the stable phase L of the empty bucket is determined by

R =—=-—T7T1 where I = sin ¢s <0 (12.3)

dwRFr.h%:hwo_.d_p_:hn Vs ir_)i
dt dt P dt RS P dt
Combined with (12-3) this yields
dopr hn eNV c \2 hn eNV
. .- <_> - r (12.4)
dt RSZ myg 2 R,/ v 2B

For normal acceleration in a synchrotron, where Bz increases noticeably with time, a

similar formula applies but with n replaced by 1/y? .

The method of phase displacement (Ref. 13) allows acceleration of a stack by an empty
bucket with a momentum height which is much smaller than the momentum spread of the stack;

this is in contrast with normal acceleration, where the momentum height of the bucket is

necessarily larger than the momentum spread of the bunch. Phase displacement acceleration
has been successfully used in the ISR to accelerate coasting beams from 26.6 to 31.4 Ge/c
(Ref. 14); it necessitated around 200 sweeps of 3 seconds each with a total voltage NV of

12 kv.
Momentum blow up

For any particle, the change in momentum is given by (12.2). Using the reduced time

(5.1) and the reduced Hamiltonian (5.5 ) yields

dt = K; dt* = Kl—(-ijz where y = 1/2H* + 2 sgn (n) [rcp + cos cp]
y

Therefore, during an empty bucket sweep the total change in momentum of a particle which

crosses the ¢-axis at ¢1 (see Fig. 12.1) reads
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-sgn (n)ooo (
. . 12.5)
Ap = 2 E—N—\[KIS—l-I—l-q’—d? where y=f2H*+25gn (n) [r¢+cos qa] >0
27R y
61
and 0 < ¢; < 2n excluding the interval (q:e,qau).

As a first approximation we shall consider H* to be a constant; with ( 5.3) this integral

becomes
_sgll (n)ooo
Ap = -2 sgn (nz/‘ h KZM where Yy = / -2 sgn (n) Lr(q;l - ¢) + cos ¢; - cos q>]
R y
61

which can be rewritten as

-sgn (n) .0

sin ¢ + do . (12.6)
J -2 sgn (n) [r(¢1 - ¢) + cos ¢; - COS ¢]

bp = -2 sgn (1) - < 2K, >
R

61

The ensemble average of Ap over the stack is given by (12.1) as
< Ap > = < Apgp > ¢ a(r) per empty bucket sweep (12.7)
where < Apgr > is the average momentum increase due to a stationary bucket sweep:

i hw h
2 ]6 0 8
mc==—K, — mc=-<K, — > (12.8)

27 B E ° ™
0

16
< Ap > = —
ST o

Y _eNV
hn 27 E
)

S

when using ( 5.4) and taking the average of the bucket area throughout the stack.

Referred to < APgp >» the momentum change (12.6) of an individual particle reads

-sgn (n)-e
sin ¢ - do (12.9)

<ApST> 4 / -2 sgn (n) - [r(cpl - ¢) + cos ¢; - cos q,)]
$1

The integral (12.9) converges when the upper limit of integration tends to »; but it must

be computed numerically. From (12.7) one must have

<S > =qa(I) where a(l) =0 for T| > 1 (12.10)
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which has indeed been verified in the case of a uniform particle distribution in phase

space (Ref.15). Detailed numerical computations (Ref. 15), confirmed by measurements, have
also shown that:

< (S - <S>)2 >

Q

r2 for ir| <1
(1z.11)

Q

=

3 -1
) + T for iT{ > 1.5

(

Therefore, after the n h empty bucket sweep, the mean square momentum spread of the stack

is given by

< (i%)z> - <<—8P->2 > +nr? [( fpﬂ)] ’ (12.12)

m C
[o}

Choice of T

The total number n of empty bucket sweeps necessary to increase the momentum of the

stack by an amount < Ap >wanted reads, with (12.7):

n = wanted _ T wanted (12.13)
Ap sweep a(l) < Apgr >
whereas the time needed for a single sweep is obtained from (12.3) as
_p . L < ZmR >, P
TSweep =F o ——gg;—— 2 [(ap)Stack + M (6p)bucket:] per sweep (12.14)

where F and M are safety factors which are taken as (Ref. 16)
1<Fx2 and 1<M510

With (9.7 ) and (12.8), the bucket height in(12,14) may be expressed as

1
- m . i 2 !
(8P)pucket = Y < Mpgp > | sin ¢ - ¢ cos ¢ where cos ¢ = |r]

In(12.14) this term is normally much smaller than (8P)g .. -

From(12.12) and (12.13), in order to keep the momentum blow-up small, one should take
r2

as small as possible. On the other hand, from (12.13) and (12.14), in order to keep
a(T)
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the total time n - Tsweep short, one should take |I| - a(r) as large as possible.
Since |T| + a(r) reaches a maximum for || = 0.4 , the best choice is certainly

|T| < 0.4 . These and other considerations (E. Ciapala: Ref. 2, p.217-220), based on the
effects of RF phase noise on particle diffusion and on the effects of a change'in the
empty bucket area across the stack (due to a variation of Ypp 8cross the machine

aperture) (Ref. 17) have, in the case of the ISR led to the choice

-0.3 <T < -0.1 with mostly r=-0.2

13. LINEAR ACCELERATORS

A linear accelerator may be considered as the limiting case of a synchrotron where

R » «» . The momentum compaction is zero:

and, from (3-3), 1

Therefore a linac is always below transition.

In a linac, the distance L between accelerating cavities becomes the cell length of the

accelerating structure:

_C _ 2mR is fixed while R+o , N»o (13.1)
L_ =
N N
w. w
h_RE_RE remains finite while R+, h+w (13.2)
R R
w v
o s
w w
g = 2rh _ 2vh | L = _RF L = kRF L - 1 where kRF = RE (13.3)
N 21R VS Bs ¢

is the RF phase-shift that must be provided between adjacent cells in order to keep the
the phase of the reference particle constant along the accelerating structure (This phase
shift should hopefully not be confused with the azimuthal variable 6 defined in section
3).

In contrast to synchrotrons, ®pE in linacs does not vary with time, and there are

no harmonics on the RF frequency, i.e.
gl¢) = sin ¢
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Moreover, linacs are usually designed so as to maintain the phase shift per cell ©
constant along the accelerating structure (which is then said to operate in the 6-mode);
in that case, as shown by (13.3), L/vs is constant along the structure: the cell length
increases with particle velocity.

Non-relativistic linacs

Finite difference equations

Dividing (3.11) by h , and using (13.3) in (3.-4) we obtain

By - o8, = eV {gle) - 8G9} (13.4)
w n 8y 1
- RE - - s 153 . i
8,1 - 80 = -7 Lo — Y = N kep L - 8 (13.5)
s By B Y B+l

where V is the peak RF voltage in a single cell.

This mapping preserves area in the (GEn , 6¢n) plane; in fact, the variable conjugate
SE E
to §¢_ is a.=° 8y_ . The equations above can be written down at once when we
n (.L)RP (A)RF n

observe that for any particle

En+l - En =eV - g(¢n) (13.6)
L 1 1

¢ -0 = Wpp ° 'e=kFFL - - == (13.7)

n+l n RF Vn+1 Bn+1 BS

Frequency of small phase oscillations

It is given by (11.8), where

w 6 6 1 eV cos ¢ 62 1 eV cos ¢

or 2 Zso _ s _ (_ s
SINT T 2) T F L, E 2 s k- LE (13-8)

RF BSYs 0 BsYe RF o

where V/L is the average accelerating electric field on the linac axis.
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Differential equations. Hamiltonian

Taking the distance s along the linac axis as the independent variable, one immed-

iately writes (13.4), (13.5) in differential form as

d _ v _ _ _oH ‘
iUl ) [gcqs) g(q»s)] T (13.9)
where Sy =y - g
d $ 3H
e R ST (13-10)
BsYs
Using (4.8 ) this system may be derived from the Hamiltonian
ev
H=- l'EBE- ()% + =7 | + G(o) (13.11)
2 .33 EL
BSYS o

where the potential energy reads, for a sinusoidal RF voltage:

T + G(¢) = ¢ sin ¢_ + cos ¢

Z+¢]) cos sing = - (sin¢ - PCOS ¢ ) + = COS @
2 s i ¢ 'S 2 s

Instead of the phase ¢ used in synchrotron theory, it is common in linac theory to use
the phase ¢ measured from the crest of the RF voltage. Since sgn(yg) = -sgn(n)-sgn(r),
it follows that @ is negative in a linear accelerator. o

E
The variable conjugate to ¢ is &y or, in the physical phase space, = ;9— . 8y
RF RF

therefore area is preserved in the (dy, ¢)plane.

Adiabatic damping of phase oscillations

The Hamiltonian (13.11) depends on s through g3 y3 , even if V/L and ¢s are assuned to
be constant along the linac. Therefore H 1is not exactly a constant of motion, and.the
curves H = constant with B3 y3 and V/L taken as constants are only approximate
trajectories.

In order to have a more accurate picture of the actual trajectories, it is better, as in

Fig. 10.2, to use a representation in the reduced coordinate (y,¢) plane. From (5.1) and
(5.4),

1 1
2 T2 2
CSE B eV g ey | T (13.12)

w

-1
Yy X :
RF o) 0 "RF
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where again we have used (13.3). In the (y,¢) plane, the trajectories look like the
bottom part (y < Ytr) of Fig. 10.2, where we recognize the familiar golf-club of low-8
linacs (Ref. 8; Ref. 9, p.27).

Relativistic linacs

They are built for B = 1, i.e. Yg =@ By (13.3) this entails that for 6
constant, L is constant along the linac: therefore the accelerating structure is exactly
periodic, with geometrical period L. Since vy is constant, the synchronous particle is

not accelerated, and

r=g(¢) =sino, =0

Since n >0 , ¢

s 0 at the stable fixed point.

Therefore the particles are accelerated inside a stationary bucket, but the reference

energy is at infinity.

Finite difference equations

Since Yg = ® , We can no longer use the system (13.4), (13.5); instead we must use

the system (13.6), (13.7) which reads, for any particle:

v -V g (13.13)
(o]

n#l " ™h

- L h L - [1-2 b 13.14
Spe1 T G T kRF L -1 where 5 = ; (13.14)

Bn+l

This mapping preserves area in the (Yn’ ¢n) plane; but like the mapping (11.1), (11.2), it
does not admit of any (smooth) constant of motion. In order to obtain an (approximate)

constant of motion, we must again go over to differential equations.

Differential equations. Hamiltonian

In differential form, the system (13.13), (13.14) becomes

oH
a9

d V
E=F1e® (13.15)
o

/
9o _ 1 | 1. S b
s kRF (B 1 5y where 8 1 N (13.16)
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Using (4.8) this system may be derived from the Hamiltonian

ev .
H=lgp (B-1) v + E;L + G(¢) (13.17)
where, for a sinusoidal voltage: G(¢) = cos¢ = - sing

If, as is often the case, the average accelerating field V/L is maintained constant along
the accelerator, H does not depend explicitly on s : it is therefore a constant of motion,

and the particle trajectories in the (§,¢) plane are the curves H = constant. By putting
with (13.3),

kg LE, 0 ' E, (13.18)
o

it is seen that (13.17) is proportional to the reduced Hamiltonian

H*=- (1-8)y + K-=+cos¢-=- ET:%S—:; + K+ cos ¢ (13.19)

which depends on a single dimensionless parameter K.
y - 102
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Fig. 13.1 - Longituainal phase space of a relativistic linac (¢s =0, Yg = ).
In the figure, K = 0.2 ; this value corresponds to the SLAC 3.2 km

electron linac operated at 20 GeV (with 6 = 2n/31,
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Particle trajectories H* = constant are shown in Fig. 13.1. When y » «, ¢

approaches an asymptotic value ¢ _ given by

H* = K « cos ¢_ (13.20)

If H* > K , there is no corresponding real trajectory in the vy , ¢ plane.

If -K < H* < K, the trajectories are asymptotic to a line parallel to the y-axis at ¢_ ,

with 0 < ¢ <.
If H* < -K , y reaches a finite maximum at ¢ = m .
All trajectories are symmetrical with respect to ¢ = 0 and have period 2w in ¢ . The

particular curve which corresponds to ¢_ = m separates the bounded and unbounded

motions: it is thus the separatrix; at the same time it is an actual trajectory, because

the bucket is stationary and K is assumed to be constant.

; phase
In (13.15), (13.16), the variable conjugate to ¢ 1is vy or, in the physicalkspace,
E E
—— = —— - v ; therefore the particle motion preserves area in the (y,¢) plane.
w w
RF RF
In order to reach high energies, particles are injected with initial conditions such that

m
L
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APPENDIX A Synchrotron frequency in a stationary bucket with a harmonic cavity

©

. a
g(¢) =Z a  sin (n¢) G(¢) =Z n_n cos (ng¢) with a; =
n=1

n=1

Canonical equations:

& = sen () (r-gm)
d _
-y

Differential equation for ¢:

o _ sgn (n) (P - g(¢)> =0
dt*2

For a stationary bucket, T = 0 and this equation reduces to

2
4% sgn (n) E a_ sin (n¢) = 0
dt*2 7"
n=

Let 1p=¢-¢s ; then

&y e =
ol + sgn (n)z a cos (ncps) sin (ny)

Putting n=1
¢, = sen (n) - a, cos (nzps)
we finally have
d2y . B .
— + c sin (ny) =0 with c; >0
dt*2 1 n
n=

1

(A.1)

(A.2)

Depending on the origin of time, the solution of (A.2) may in specific cases appear as an
even or an odd function of time. Let us assume that it is an even function of time, then

we may write the solution of (A.2) in the form

0
Yy = a  cos (mt) where T = w*t*
m=

hence

©

a2y _ 2 Z 2
; = T Wt . n* o cos (mt)

m=0

(A.3)

(A4)
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Using the expansions
+00

oJzsine _ Z J @ %)=
p
p:—m

ejz cos 6 _ 2: jp Jp(z) ejpe

p:-oo
we obtain
v n oJn o cos mr

m=0

[ +oc0

- P Jjpmt

nz j Jp (n ozm) e
m=0 p=-=

Z nJme (na)eJTZmp
Emp

where Pn is a full set of integers (from -= to +=) corresponding to m.

Combining (A.4 ) with (A.2 ) yields

w*2 . Z r2 a_ cos (rr) = Z c, sin (ny)

r=0 n=1
=ch1m Z nJme (na)[cos(r):mp)+jsin(r§lmpm)]
n=1 Zm Pn
Let < oc
Zmpm=ir and me=q (A.5)
m=0 M=o

By changing Py into -p, We see that all sin-terms disappear; we are thus left with

w*2 12 o Z: ZC J Jpo (noto) Jp (nay) Jp (noy) ...

q odd = -» n=1 1 2

It is easy to see that iﬁ the (¢,¢) plane, a trajectory must be symmetrical with respect to
both axes; this entails that in (A.3), m =1, 3,...
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and (A.5) reduces to

p1 *+3p3 +5ps + ... = FT
(A.6)
pr*P3+tpPst ... = Q
hence + 1 -q=2p3 +dps + ... is even.
Since q must be odd, r must also be odd and we are left with
+00 4 o0
z ; -q-1 %22 A.
Z c, J Jpl(nal) JP3(na3) Jps(not5) e =w*rtal (A.7)
q odd = -~ n=1
r=1, 3, ..
In the following, we neglect terms of order a5 and higher; this amounts to taking
Ps =p; = ... =0 and to putting Jo(nas) = Jo(na7) = ... =1. Then (A.6) reduces to
Py *+ 3p3 =tr
Q=py +P3=*T - 2py

Changing P, into P, changes +r into -r but leaves the summation in (A.7) unchanged.
Therefore, it is sufficient to keep +r only if one introduces a factor 2 in the left-hand

side of (A.7).

pp +3p3 =1 with q=1-2p;3

Then (A.7) becomes successively

«© +o

Z “n ZZ ('1)p3 Jl-Spg(ml) JPa(m3) Tt
=1 ps = -=

o

Z Cn 2 [Jl(nul) Jo(n0l3) - J2(na1) Jl(n(l3) + Jq(na]) J1(110L3) - Js(ndl) Jz(naa)

n=1

+ J7(noy) Jo(nas) - ] = w*2 q
. Jp(ney) . J) (nas)
n CI] 2 —— JO(TIOL3) -2 [Jz(nal) - Jq(nal)J -0 (OLlL’ . 0L32) = w*z
n=1 Noy no,

(A.3)
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p1 +3p3 =3 with q=3 - 2p3
Then ( A.7 ) becomes successively

-] +00
1_
Z c, 2 Z (-1)~7P3 J3ap, (m01) I (nas) = w*2 32 g
n=1 P

3= -0

© +oo
ch 2 Z Jap(nozl) Jp+1(na3)
n=1

p===

=ZCn Z[Jo(nal) JI(HOL3) - J3(Il0ll) Jo(na3) + Jg(n(ll) Jz(notg) - Je(notl) Jl (1’10‘3)
=1

2
+ J6(na1) J3(HOL3) - ...J = 32 w* . a3z

2J; (na3) J3(na;)
Z n <, { R [Jo(nal) - Je(m‘l)] -2 Jo(m‘s) - Jz(na3)]

No g na g

2
+0 (0,5, aj?) } = 32 y* (A.9)

Keeping only the first terms in ( A.9 ) and ( A.8 ) yields

©

Js(nal) 2
Z ne {Jo(ml) -2 + 0(0,5) + 0(as?) } =32 4* (A.10)

nog

n=1

o

Ji(na;) oy
Z n Cn { 2 - Jz(nal) + 0((116) + 0(&130.3) + 0(0‘32)}

no; no

2
* (A.11)

"
€

n=1
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In particular, by letting o; - 0 in (A.11 ) we obtain

©

2
Wt = Z nc (A.12)

n=1
Combining (A.10 ) and (A.l1 ) yields
- 2 2J1(na;) 5 a3 J3(nay)
Z ne ¢33 — - 3 — Jy(nay) - Jo(nal) + 2
n=1 no g o] nas
+ 0(21®) + 0(a%a3) + 0(a3?) } =0
2 Ji(noy) a3 2 o1 Jz(noy)
Z n Cn 3 2 - Jo(nal) -—3 Jz(l’lotl) +— 2
n=1 nNay o) a3 na,
+0(a;®) + 0(0y303) + 0(0‘32)} =0
o3 2 Jy(noy) PR P —
- — nc, 3 -2 - Jo(nal) +<—> 3 Z nc, Jy(nay)
*1 p=1 noy 1 n=1
\ , v )
—~— v
B A
J3(na1) a3
- Z nc, 2 = | 0(018) + 0(a13a3) + O(asz)] = (A.13)
n=1 ney .
© —
Y~
C
Because
Jv =)
ZV X - J‘V'l (X) + Jv+1 (X) ’

it is seen that:

A=33+C+ 0" = 0(a12) while B = 0(1)
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Solve (A.13 ) for a3 / a;

Q

a _ N BC
3 _ 2C C - [ 1+ 0(a16)] - L [ 1+ O(al“)]
B

o1
B + /B2 + 4AC g Ac BT AC
B

BC 24-1
= e — + o = -Q + ﬂ . +
B2 + 332 [l ¢ 16)] B [1 3(B ) ] [l O(aIG)]'

Finally

©

Z Cn 2 J3(not1)

- 29 -1

ag = - — = 1+ 3<£> 1+ O(ale)] (A.14)
Jl(nal) B Jd

)

nog

The synchrotron frequency is then obtained as a function of

TR D

m=1,3,...

by using ( A.14 ) in ( A.8 ) and remembering that a3 = 0(-a3).

Remark: The series ©

y(t) = E . C€Os (mr)

m=1,3,...
is equivalent to
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APPENDIX B Bucket Area o(l)

From (9-1), I = sin ¢ = sin ¢, |T| = cos g
Put ¢=-Sgn(n1")’(¢'¢u)>0

From (9-4) and (9-5),

¢
2
a = - —sgn (nr)
16
¢u

e

/7/- sgn (n) [F¢u+cos ¢u] + sgn (n) [F¢+cos ¢] - d¢

AN -

v

- sgn (n) cos ¢, [1 - cos w] - [rw - sin ¢ sin w]

= |sin <ps| (1 - cos y) - cos e (¥ - sin y)

Therefore
ERON ,
o =2 f /2—/|Sin‘/’5| (1 -cos ¢) -cos o_ (p -siny) « dy
16 S
0
or
b=l -0,
1 .
a=7/cos¢s f d%-sm‘g /Itgy’sl—t (8.1)
¥=0
where
t = p - sin y
1l -cos vy
As a series in vy,
t =¥, v’ + v + v’ + v? + 691 il .. (8.2)

3 2.5.9 2.4.5.7.9 33.42.52.7 33,42,8,7.9.11 3°.4%.53.72.11.13
Inverting the series (B.2) one obtains
2 4 2 6
Ji:it 1_i(é) + z.3 (_St) _._____2 -ét
2 2 3.512 52,7 \ 2 3.53 | 2

, _2.1103 ( 3 ) 8 22,7171 3 ) 10 (8.3)
—_— =t - =t + o
32,53,72,11 \ 2 55,72,11.13 | 2
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