
Chapter 3
Interaction of Particle Beams and Matter

Abstract This chapter teaches the basic understanding of the beam-matter interac-
tion physics of photons, electrons, and ions relevant for accelerator applications. The
two main parts of energy-loss and nuclear interactions will be discussed on the basis
of examples and practically relevant quantities. Themathematics of depth-dependent
reactions combines these two aspects resulting in a 1Dmodel. Depth dependent reac-
tions explain about 98% of the interaction physics of the typical fixed thick target
geometry of applications resulting in reaction probabilities and equations for prac-
tical efficiency optimisation and device layout. A few examples of established codes
and practical implementation of the knowledge concludes the chapter.

This section will discuss the physical basics for understanding accelerator applica-
tions. By far most of them rely on the interaction of the accelerated beam with some
kind of target, may this be a sample, a production target or a human being. The
four fundamental forces of physics represent the basis of all beam-matter interac-
tions. From daily life we know gravity, a force extremely weak when normalized
to the number of particles required per unit strength. Its range is large, but its small
strength makes it negligible in accelerator applications. The electro-magnetic force
has a similar range, but a significantly stronger effect than gravity. It keeps the world
together by using photons to let positive and negative charges interact. In contrast to
gravity it has two different charge polarities which we call plus and minus, leading to
a possibility of shielding it via neutralisation of opposing fields. We already learned
about its importance for accelerator applications with respect to the electro-magnetic
technology required, but it also results many interactions of charged particles with
targets such as stopping or elastic scattering. The strongest force, the strong force,
also features the lowest range. It holds the nucleus together, but its range restricts to
nuclear dimensions. It requires six charge types/flavours usually named red, green,
blue, and their anti-counterparts and is mediated by gluons. This force draws respon-
sible for inelastic scattering in the form of fission and fusion reactions, allowing us to
change the atomic nucleus, if we are able to bring two particles into their strong force
range. Its strength draws responsible for the large specific energy content of nuclear
fuels, exceeding the one of chemical (= electro-magnetically bound) fuels by about
106. Lastly, the so-called weak force is responsible for most radioactive decays and
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neutrino interactions. Its mediators, the W and Z bosons are heavy, leading to a low
range in the order of the atomic nucleus. Its weakness manifests in the extremely
low interaction probability of neutrinos, which only interact via the weak force with
matter (see later in Sect. 4.4).

In contrast to the typical situation in fundamental particle physics, where two
beams counter-propagate and collide with each other in an interaction zone (fixed
centre-of-mass), application targets consists of normal stationary matter (fixed
target). Furthermore, the target comprises several different species, at least elec-
trons and a set of more or less abundant elements (desired and impurities) leading
to complex interactions. Besides this, also the kinematics and the chain of events of
the interaction differ between colliding beam and fixed target situations.

The Rutherford experiment marks the original fixed target experiment, featuring
already many of the physical aspects still relevant in accelerator applications today.
Rutherfordwanted to understand the nature of the atomic nucleus and its charge distri-
bution. At that time, over 100 years ago, it was not quite clear whether the nucleus is a
compact object or a cloud of positive charges mixed with a cloud of negative electron
charges in the atom, since bothwould result in a neutral atom as seen from the outside.
Rutherford wanted to falsify one of the models by a scattering experiment of an ion
beam with a fixed target. Firstly, he calculated the kinematics and scattering proba-
bilities (cross-sections) for each situation, yielding the famous Rutherford formula
(3.1). With this knowledge, he designed an experiment for shooting some MeV α-
particles (doubly ionised helium: 4He++) from a nuclear decay through a thin gold
foil with particle detectors around it. The experiment yielded an angular probability
distribution of the scattered particles according to the compact nucleus model repre-
sented by his formula, constituting the current understanding of the atomic structure.
In his experiment, Rutherford was lucky, because with the technology of his time
he was already able to produce a foil thin enough (some 100 nm) to be passed by
5 MeV alpha particles, which was the maximum he was able to provide. We will
see in the following sections that α-particles of that energy not even pass 10 μm of
gold (assuming surrounding UHV) and hence the technological aspects were a key
parameter in the success of Rutherford’s ground-breaking experiment.
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Each interaction has two sides, on the one hand its probability of occurrence called
the cross-section (which was Rutherford’s testing ground) and on the other hand the
collision process of each individual instance of this reaction called the kinematics.
To change from the view of the probability/cross-sections to the process/kinematics,
we first define the situation. We call the accelerated particle shot into the situation
the projectile. Definitely the projectile starts the situation, since it is initially the only
moving particle (remember we are talking about fixed target situations). Please note
this view is from the laboratory system, in the centre-of-mass system all particles
are moving also in a fixed target reaction. The projectile of massm1 hits the target of
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Fig. 3.1 Kinematics of a 2-body reaction with a stationary target in the laboratory frame (E2=
0) has 9 parameters. The energies and angles of all particles have unique relations defined by
mathematics. In contrast, a reaction with more products (n-body reaction) also conserves energy
and momentum, but allows for more than one solution as will be explained later

mass m2 with kinetic energy E1. Both particles scatter and emit a light product m3

and a heavy product m4, each having a certain emission angle (� and φ) against the
initial vector of the projectile. In 3D � and φ will describe circles when seen from
the projectile movement direction due to the rotational symmetry of the process. The
whole situation is depicted in Fig. 3.1.

This so-called two-body reaction is the standard situation we have to consider in
accelerator applications. Single reactions with more than two input particles require
extreme densities. Those conditions are technologically so far inaccessible or of
minor importance and will not be considered in this edition (maybe in future ones).
Reactions with more than two output particles commonly appear in nuclear decays,
in particular β-decays feature 3 output particles (electrons for β−, positrons for β+,
neutrinos and a heavy nucleus, see Chap. 5), and nuclear reactions can feature 3 (E1

>≈ 10 MeV) or more products with increasing projectile energy. These reactions
add the complication of interconnected spectra for all outgoing particle properties,
in contrast to the kinematics of the two-body reaction featuring only a single solu-
tion at each product angle. In any case, the whole situation has to fulfil momentum
and energy conservation, which allows calculating the respective product parameters
with the knowledge about the four masses and, in the case of two-body reactions,
any four other parameters of the situation (leaving 1 unknown+ 1 equation= unam-
biguous solution), see Sect. 3.3.2. The mathematical flexibility implied by these
equations forms an important aspect of our physical understanding and also tech-
nological exploitation of beam-matter interactions. As we will see in the course of
this chapter, everything interacts with everything, even with the vacuum, but the
mathematical formulations allows us tailoring and identifying the reactions. This
additional information compensates for the lack of information provided by detec-
tors (Sect. 2.5). The same equations apply for material analysis, isotope production,
or patient treatment, just with different unknowns in the equation system.

The interaction of beams and matter covers a wide range of specific physics.
Not all of them are fully or even partially understood. In view of applications we
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divide the level of knowledge into three categories: Theoretical, semi-empirical,
and empirical understanding. Full theoretical models requiring no external input,
except for fundamental constants, so-called ab initio models, are the highest level of
understanding. Think of a treasure quest. Theoretical understanding equals a situation
where you have a full map containing all the information on what the treasure looks
like, how much gold it contains, and the mm resolved path this would allow walking
to the treasure blind with only your feet (or technology) limiting the amount of
success. If you know there is a treasure somewhere, but you only have a plain path
drawn on a handkerchief, without coordinates, scales, or the like you have a semi-
empirical understanding. It tells you which turns to take and the dangers lurking on
your path, but you do not know where to start or how long the way will be and which
dangerswait on your path. The same applies for beammatter interaction. Some cross-
sections, such as Rutherford’s, were understood to their fundamental physics and a
theory was found accurately describing them. Others have been investigated deeply
and mathematical relations were found empirically, but certain constants, factors, or
limiting cases cannot be covered by existing semi-empirical models. A few cases,
such as the radioactive decay, were broadly investigated experimentally, but due to
the lack of understanding no type of extra- or interpolation of data is possible. In
this lowest level of understanding we only have an empirical qualitative estimate of
the order of magnitude and the influence factors of the process, but we do not even
know if this covers the full space of possible pathways of the process.

Rutherford understood the nature of the target structure in his gold foil experi-
ment by the match of the cross-section calculated from his hard sphere model and the
agreements with the experimental results. Interestingly, most of the α-particles actu-
ally passed the gold foil in Rutherford’s experiment undisturbed.We can quantify the
interaction probability w using (3.2) and the gold atomic density ρ by multiplying
with the Rutherford cross-section σ and the foils thickness d.

w = σ(E) ∗ ρ ∗ d (3.2)

The interaction probability remains in the percent range, even if we infinitely
increase the gold foil thickness beyond Rutherford’s thin foil. From common sense,
but also from a mathematical limit consideration, it becomes obvious we didn’t
completely understand the situation: An infinite target thickness should yield a 100%
reaction probability for each projectile, otherwise they would fly through the target, a
situation empirically non-existent. By increasing the foil thickness beyond 10μmwe
would come to know that the α-particles will already get stuck in the foil way before
Rutherford’s reaction probability even has a chance reaching 100%. Therefore, at
least a second mechanism stopping the α-particles has to exist besides Rutherford-
scattering. The question arises which interactions were missing in Rutherford’s
description, since a particle beam will not stop by itself, just like a spaceship will
not stop by itself in the vacuum of the universe.

So far we skipped considering 98.7% of the particles in the gold foil, the electrons
attached to the gold nuclei forming the atom. Gold has 79 times more electrons than
nuclei (= nuclear charge Z), which can undergo the same 2-body reactions with the
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Fig. 3.2 Anα-particle source (≈ 5MeVα) placed at the bottom emitsα’s into a cloud chamber. The
bright tracks indicate individual particle tracks. The particle range in the cloud chamber’s alcohol
mixture slightly differs for each particle due to statistical effects of the stopping, even a 50% longer
spike is present. Reprinted from physicsopenlab.org CC-BY 4.0 license

projectiles as the nucleus, although with different kinematic parameters. Everything
relies on the ratios of the interaction cross-sections and the results of the interaction.
There are actually significant amounts of interactions with the electrons contained
in the gold foil, but due to the strong mass difference of electrons and α-particles the
energy transfer remains small in each interaction. In a reasonable approximation, the
electrons act like an aether continuously slowing down the α-particles or, in general,
charged particles, passing through them. Imagine it like walking through IKEA’s
Småland ball pool with the force required to push away the balls from your way
slowing you down. The ratio of ball to human mass even approximately resembles
the electron to α-particle mass.

Rutherford’s experiment was designed in a way to minimize this slowing effect
by staying in the limit of a thin target. Upon increasing the foil thickness we
slowly leave the thin target regime and the energy-loss of the α-particles becomes
visible/measureable. At a gold foil thickness of about 10 μm all α-particles will stop
inside the foil and Rutherfords experiment would not yield any measurable quantity
in the forward direction. In the backward direction the situation will also change, as
the reactions from different depth will add up. The thickness related to this so-called
thick target limit strongly depends on the beam and target properties. The situation
gets nicely visualized in a cloud chamber in Fig. 3.2 with no α-particle reaching the
top end of the cloud chamber.

Particle beams do not see distance when passing through matter. Of course, for
the beam optical aspects of divergence and direction remain relevant as demonstrated
in Fig. 3.2, but here we focus on the beam-matter interaction since the distances are
relatively short (e.g. the 10 μm foil). In order to understand the way particle beams
see matter let us consider the following three situations: A beam gets fired onto a
solid metal, the same metal but as a metal foam with vacuum in the pores, and, last
but not least, the same metal foam but with air inside the pores. The situations are
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Fig. 3.3 Illustration of a beam (black line) in a solid (grey), a porous solid with vacuum inside the
pores, and one with gas inside the pores. At the end of its range, the beam spreads out due to the
statistical nature of scattering. In its interactions, a beam only sees matter, not distances. In vacuum,
the beam travels undisturbed, like a space ship. In matter, the intensity of interaction depends on
the matter density, hence gas volumes show lower interaction rates than solids

depicted in Fig. 3.3. In the first case, the beam travels a depth X into the material
until its energy is dissipated. In the porous material the beam will lose energy when
passing the metal, but in the pore’s vacuum no energy is lost, hence the total range
extends by the porosity aspect. In the third case, the pores also contain matter (gas),
but the relatively low density of gas yields only a very small influence. The range in
the pore exceeds the range in the metal, but gas still contributes to the energy-loss.
Section 3.2 discusses the quantification of the beam stopping and its mathematical
treatment.

Usually the projectile (photon, electrons, ions) beams density is insufficient for
simultaneous reactions of several projectileswith single targets and reactions between
projectiles are negligible due to the low relative speeds (= low emittance). Also target
densities of normal matter are too low for reactions with multiple targets. This allows
treating each beam particle individually in the so-called binary collision approxima-
tion (BCA). Therefore, the interaction of a beam with a target equals the sum over
all the independent individual reactions. The BCA constitutes an important basis for
our understanding and quantitative computer modelling of beam-matter interaction.
This may sound trivial, but the exchangeability between the individual particle and
the ensemble (beam) picture will become an important tool for understanding and
mathematical treatment of beam-matter interactions.

In order to understand and work with something you have to give it a name.
In addition to these energy-transfer reactions nuclear reactions become possible at
higher projectile energies. Naming of nuclear reactions follows international conven-
tions. The naming needs to include the target, projectile, and products. The reaction
of a 12C target with a 3He projectile resulting in a proton and a 14N product reads
for example 12C(3He, p)14N. For describing a class of reactions or shortening the
naming, the same reaction could also be named (3He, p) corresponding to a naming
scheme (projectile, light product). (p,n) describes a typical reaction with two prod-
ucts, a 2-body reaction. Correspondingly (p,2n) and (p,n+4He) describe reactions
with three products, (p,3n) with four products and so on. If we want to describe
a class of reactions, leading for example to the same element, we can introduce a
variable x in the form (p,xn) with x = 1 to infinity to discuss reactions producing
only neutrons.
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3.1 Absorption and Reactions of Photons

We first take a step back away from the massive (mass > 0) charged particles
produced in accelerators in order to improve our understanding of the interaction
of particle beams with matter. Mass-free (or more correctly rest-mass-free) particles
like photons necessarily have to travel with the speed of light, hence they cannot be
slowed down. Logically for these particles, an energy-loss mechanism by friction is
not possible, but energy can only be transferred via a reduction in quantity or inten-
sity, respectively. This directly leads to a differential equation with an exponential
decay solution of the photon beam intensity I in depending on the distance d passed
in matter, equivalent to a constant absorption probability for each individual photon
per passed matter particle.

I

I0
= e−dμ (3.3)

Due to the lack of the friction mechanism, photons typically achieve the longest
attenuation length μ and hence range (distance d) for a given kinetic energy of
the considered species (e−, ions, neutrons). The attenuation length increases with
increasing photon energy. We already saw the technical effect of this fundamental
physics in the detector Sect. 2.5 in Fig. 2.44 with the required detector thicknesses
being largest for photon absorption. Also in radiation protection, Sect. 2.7.3, this and
the exponential decay law lead to thick shielding requirements for photons.

Having said photon beams only lose energy by a reduction of intensity is actually
not entirely accurate. For lower energies, scattering dominates the interaction of
photons and matter. Scattered photons are absorbed and instantly reemitted in a
different direction and hence cannot be considered as the same particle or part of
the same beam population. A set of mechanisms exists for the interaction of photons
with electrons. Scattering processes (approximately) conserving the photon energy
dominate the photon matter interaction for lower energies up to the binding energies
of electrons to atoms (e.g. 13.6 eV for H). This class of elastic process retains
coherence (= phase relation) with the original beam. A prominent example among
this is the Rayleigh scattering which leads to the blue sky, since the processes cross-
section is inversely proportional to the fourth power of the wavelength, scattering
more blue than red or green light in the observer’s direction. With increasing photon
energies or shorter wavelength, respectively, the elastic scattering energy transfer
increases. With sufficient energy transfer, remember our scattering partner binds to
atoms, the electrons gain enough energy to leave their binding state. Starting with
this energy, the elastic scattering becomes incoherent, since the electron receives part
of the energy. This so-called Compton scattering follows a probability distribution
given by a cross-section called the Klein-Nishina formula, (3.4).
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This differential cross-section describes photon scattering from free resting point
charges (electrons or ions), a situation only approximately true for electrons in atoms,
with massm, charge Ze, and the scattering angle� between incoming (energy E) and
outgoing photon (energy E′). This formula only approximately describes the situa-
tion, but allows understanding the basic trends with an analytical description. The
scattering cross-section decreases with the photon energy, hence Compton scattering
becomes less efficient for high energy photons. The cross-section also decreases with
increasing energy transfer and scattering angle. For photon energies small compared
to the electron rest-massmec2 only negligible energy transfer occurs; the low energy
limit of Compton scattering yields the coherent elastic scattering process discussed
above. In all cases, (3.4) leads to a continuum of scattered photon energies, similar
to Bremsstrahlung where electrons penetrate matter.

In parallel to the incoherent scattering Einstein’s photoelectric-effect, the ioni-
sation of atoms or the freeing of bound electrons, respectively, takes place. Equa-
tion (3.5) describes the cross-section of this inelastic process. It requires photon
energies above the binding energy of the electrons to their atoms. Energy in excess
of the binding energy will end up as kinetic energy of the released electron. All atoms
above hydrogen (H) feature several electrons, each with different binding energies.
The ionisation of the electrons from the innermost shell, called the K-shell, requires
the highest energy in the order of a few 10 keV for heavy elements. The higher
a binding level in the atomic shell, the lower its binding energy due to the core
charge shielding of the inner electrons. Each binding state represents an independent
instance of the photoelectric-effect, leading to so-called absorption edges at the given
binding energies.

dσ

d�
= Constant ∗ Z5 ∗ E−3.5 (3.5)

The free spot of the released electron will quickly be reoccupied by another
electron. The involved binding energy remains the same, but now has to be released
in the form of a photon. In particular for the inner binding shells, also bound electrons
from other higher shells can reoccupy the free position. These inner conversions emit
photons with an energy given by the difference between initial and final binding state.
A table of possible conversions arises, from which the innermost shells (K and L)
are given in Fig. 3.4. The absorption of photons with an energy equal to the binding
energy or higher can only lead to a complete release of the electron. The process can
be triggered not only by photons, but also by charged particles as we will see later.

At the highest photon energies, new inelastic scattering processes add up to the
interaction list. Up to here all photon interactions involved scattering with more
or less free electrons. The quantum nature of the bindings implies certain specific
energy limits. With photon energies above 1022 keV a new interaction process
with the nucleus becomes possible. This interaction converts the photon energy
to matter/mass. All physical processes have to conserve energy, momentum and
quantum numbers. Consequently, for producing massive particles only matter anti-
matter pairs can be produced. With a rest-mass of 511 keV/c2, 1022 keV and more
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allows for the production of electron-positron pairs. The process requires a nucleus to
balance the momentum. Balancing the momentum with an electron requires slightly
higher energy due to decreasing momentum per energy for lighter particles (= same
amount of momentum transfer requires more energy transfer), favouring a nucleus
as partner. Positrons being the anti-matter equivalent of the electron cannot survive
in normal matter, quickly leading to the emission of two 511 keV photons from
the annihilation of the positron with a random electron (the reverse process). At
even higher energies, a disintegration of nuclei, so-called photo-nuclear reactions,
becomes possible, releasing neutrons and other heavy particles.

In the accelerator application context, typically photon energies are between 1 keV
and 10MeV. Plotting a graph of all the discussed processes demonstrates the diversity
of effects of photons inmatter, see Fig. 3.5. The underlying data are well documented
for the whole periodic table and are available online e.g. from the XCOM database
(Berger et al. 2010). The sum of all processes leads to a mostly exponential decrease
of attenuation with photon energy up to 1 MeV, from where on it stays constant.
We have seen all processes tend to break down photon energy to smaller and smaller
chunks. Someof these chunks have discrete energies due to quantumeffects and some
continuum distributions. For example the high energy processes convert a 2000 keV
photon to an electron-positron pair with some kinetic energy. The particles annihilate
to two 511 keV photons, which could thenmost probably Compton scatter to photons
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Fig. 3.5 Photon energy dependence of the different reaction channels of photons with iron. At
7.06 keV the K edge of iron leads to a sudden increase in attenuation, compare Fig. 3.4. The
attenuation multiplied with the material density yields the exponential fall-off length μ, (3.3). Data
from NIST XCOM Database (Berger et al. 2010)
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and electrons of even lower energy, which then induce photoelectric electrons and
photons, and so on. This kind of salami tactics consumes higher energy photons in a
chain of events with many secondary particles involved finally ending up at particles
with negligible energy.

Accelerators cannot directly influence or produce photons, but they arise from
several processes of accelerated charged particles as secondary particles. We already
came to know the Bremsstrahlung and synchrotron radiation, which describe spectra
of photons produced by deceleration of charged particles, e.g. when passing matter.
The decay of radioactive inventory and numerous nuclear reactions represents the
second relevant source of high energy photons. These photons originate from the
atomic nucleus and were given the name gamma-ray (γ ) in contrast to X-rays origi-
nating from the atomic electron shell. Therefore, in the accelerator context photons
potentially represent a problem, since they contribute to the radiation dose rates,
but originate from fundamental processes. On the other hand many applications rely
on using the production of photons. For example, the interaction of charged parti-
cles with bound electrons produces known photon energies, Fig. 3.4, allowing for
elemental identification.

3.2 Range and Stopping of Charged Particles

Beams of massive charged particles (electrons, ions) follow different physics than
photons, as their number is conserved by fundamental laws (like the conservation of
velocity for photons), but their velocity is variable. For deep insight into the physics
and mathematics of particle beam stopping and interaction with matter the reader is
referred in particular to the book (Sigmund 2006) and also the accompanying book
to the famous ion stopping software SRIM (Stopping and Range of Ions in Matter)
which includes many examples and numbers of ion stopping (Ziegler et al. 2008).

Stopping of charged particles predominantly arises from the interaction of the
beam with the electrons in matter (IKEA’s Småland ball pool friction effect), similar
to photons. The terms stopping, stopping power, specific energy loss, dE/dx, and
friction are used more or less as synonyms describing an effect of an energy loss per
length (e.g. MeV/mm), normalised to mass density (e.g. MeV cm2/g), or per passed
atoms [e.g. keV/(1015 atoms/cm2)]. In fact, since the collisions with electrons induce
stopping, distances cannot play a role for energy loss (as discussed in Fig. 3.3),
making the energy lost per passed atom/area the most fundamental quantity. The
Bethe-Bloch formula (3.6) for stopping power S in energy E lost per travelled length
x describes this for ions in matter. Stopping depends on ion velocity not energy, but
energy is usually the interesting quantity for other aspects of beam-matter interaction.

SB(E) ≡ dE

dx
= − nez2e4

4πmev2ε20

⎛
⎝ln

⎛
⎝ 2mev2

I
(
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c2

)
⎞
⎠ − v2

c2

⎞
⎠ (3.6)
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With electron density ne of the material, projectile elemental charges z (e.g. z = 1
for electrons and hydrogen ions), projectile velocity v, a mean excitation energy of
the target material I(≈10 eV), andme, ε0, c, and e fundamental constants. At energies
below a few 100 keV/amu (atomic mass unit) ions additionally lose relevant amounts
of energy due to collisions with nuclei (the billiard table effect). This nuclear aspect
of stopping transfers energy to the target nuclei leading to cascades where individual
particles hit nuclei and transfer enough energy for the hit nucleus to hit further nuclei,
see Sect. 7.4.

Electrons also lose energy due to collisions with target electrons, but with their
correspondingly higher velocity at a given energy the relevance of several effects
changes. Relativistic effects andBremsstrahlung reach a relevant level at significantly
lower energy compared to ions. In particular ions have to be beyond our considered
energy range of 250 MeV for this, while electrons require only about 1 MeV. The
Berger-Seltzer-Formula describes the stopping power of electrons consisting of the
collisional and the Bremsstrahlung part. Bremsstrahlung dominates the energy-loss
of electrons for example above 10 MeV for Pb or 400 MeV for H targets:

SE (x) = e4ne
8πε20mec2

∗ 1

1 − 1
γ 2

∗
[
ln

(
2(γ + 1)(
Imec2

)2
)

+ F

]
(3.7)

Equation (3.7) follows a different trend with similar input parameters and the
Lorentz factor γ as a measure for the electron energy. The function F adds a term
which depends on the target material properties and the electron velocity, typically
small in the energy range considered here. Figure 3.6 compares the total stopping
powers of electrons and ions. The behaviour for different ions is similar with a clear
maximum in stopping power around a few 100 keV/amu and a minimum in the GeV
range. Electrons in contrast have a minimum at around 1MeVwith higher values for
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Fig. 3.6 Stopping power of charge particles in carbon. The stopping per length is calculated by
multiplication of the values with the material density. Up to about 100 MeV the stopping power
of electrons is about 100 times smaller compared to ions. Furthermore electrons show a different
behavior, while different ions have similar but shifted stopping functions. Data from National
Institute of Standards and Technology (2019)
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small and large energies. In all cases, we see the graphs do not strictly follow (3.6)
and (3.7) in particular in the low energy half. The equations describe an important
part of physics, but additional higher order effects add up to the collisional stopping
in the high and low energy limits.

Unfortunately, physics becomes very complicated in particular at lower energies.
The electrons in the solid also move with the so-called Fermi velocity, changing
their stopping effect if the projectiles have comparable velocity. Electrons on the
other hand suffer additional energy losses by Bremsstrahlung emitted due to their
strong deceleration in matter above a few MeV. We will not discuss the details of
these higher order corrections in detail, but refer the reader to the given literature
mentioned earlier. To summarise the findings: In particular at low energies stopping
cannot be completely described analytically, but rather semi-empirically with fits to
experimental data. This implies a limited accuracy in these energy ranges, compared
to a full theoretical understanding. Uncertainties of the best known stopping powers
range up to 6% (Ziegler et al. 2008), with the accuracy of full stopping models
improving towards 1–2% at a few MeV/amu (the sweet spot).

For calculating the stopping SMix of elemental mixtures such as stainless steel or
human skin, Bragg’s rule applies.Within this rule, the total stopping power is given by
the atomic fraction ρ i of the weighted sum over the individual stopping powers Si of
each pure element, (3.8). Deviations fromBragg’s rule occur in materials with strong
chemical interactions between their constituents, in particular with light elements.
While deviations <2% occur for metals and heavy elements, a value of 6% was
found e.g. for SiO2 and H2O and values up to 20% for other special cases. Due to
the practically infinite number of compounds, only a few common compounds were
experimentally investigated for the correction factor. Some of them are available in
the SRIM code (Ziegler et al. 2008).

SMix =
∑

Si ∗ ρi (3.8)

The stopping power translates to a particle range. After this range the projectile
has lost its energy and neutralizes with the target. In particular with ion projectiles
shot into solids, this process is called implantation. The variations in stopping power
lead to a typical energy deposition curve for ions. This so-called Bragg-curve, shown
exemplary in Fig. 3.7, not only tells us the average depth of implantation of ions,
but also demonstrates the strongly inhomogeneous deposition of collisional damage
and beam power with its peak. This inhomogeneity increases with ion beam energy
for energies above the stopping power maximum due to the monotonous decrease of
stopping powerwith increasing energy, see Fig. 3.6. For technicalmaterials theBragg
peak induces thermo-mechanical problems due to the combination of collisional
damage, maximum power deposition, and implantation of ions. The particle range
x calculates by integrating the stopping power S of the target of density ρS from the
primary beam energy E0 (= projectile energy E1) till zero beam energy according
to (3.9).
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Fig. 3.7 The energy-loss curve of 5 MeV α-particles penetrating an elemental mixture represen-
tative for human skin (mostly H, C, O with ρS = 1 g/cm3), a case discussed in 2.7. The particles
feature an average range of 33.5 μm with a Bragg-Peak (maximum energy-loss) at 30 μm depth.
At the right end of the peak the ions fully stop (= implantation)

x = 1

ρS

E0∫
0

1

S(E)
dE ⇒ dx = dE

ρS ∗ S(E)
, (3.9)

The underlying effects of stopping involve the collision between the projectile
and single particles, leading to a statistical fluctuation of individual energy loss
events. Figure 3.2 showed such an example and its result on the range. This statistical
broadening of range and energy-loss is called straggling. Straggling broadens the
particle distribution in energy and space, resulting in a beam energy distribution
broadening at a fixed depth and a range broadening, respectively. The collisional
nature of stopping induces not only a longitudinal variation of energy and range,
but also a transversal component broadening the beam diameter. These statistical
effects mostly follow a normal distribution (Fig. 2.22). The particles above and
below the maximum see different S(E). Due to the variations of S with energy the
energy distribution becomes skewed. Figure 3.8 depicts the impact of straggling in
an exemplary case at different depth. Practically effects of roughness and thickness
tolerances over the finite beam spot sizes add up to the physical straggling. Due
to their mass equalling the collision partner’s mass electrons experience orders of
magnitude intenser straggling than ions.

In contrast to electrons, ions can change their effective charge during passage
of matter by picking up or stripping-off electrons. Equation (3.6) highlights the
importance of the charge z for S. The change of charge state of ions mostly leads to
fewer electrons attached to the nucleus for energies above somehundredkeV.Because
of this it is often called stripping (of electrons). The effective charge increases with
increasing beam energy. Atomswith many electrons require energies even exceeding
our 250MeV limit for stripping off all electrons. The effectmakes the initial projectile
charge state practically irrelevant for stopping power. No matter whether a He atom,
He+, or He++ projectile, the stopping power remains the same, only the projectile
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Fig. 3.8 Sketch of the beam energy distributions of 3 MeV 3He ions in carbon at three different
depth x. The deeper the particles reach, the broader and more skewed their energy distribution. As
a result particles of the same energy can be found in different depth (vertical bar)

energy matters. The statistical nature of collisions also affects the effective charge,
resulting in an energy-dependent statistical distribution of the charge states of the
individual ions constituting a beam. Besides its impact on stopping power, stripping
has a high practical relevance for ion beam generation and control. Examples such
as the Tandem accelerator Sect. 2.2.1 and the negative ion extraction in cyclotrons
Sect. 2.2.2 rely on stripping.

The effects discussed so far assume an evenly distributed electron cloud inducing
the stopping. Gases and liquids fulfil this condition, but solids with crystallographic
structure feature different, inhomogeneous electron distributions. Figure 3.9 illus-
trates such a distribution with several hotspots of electron density ne and large areas
of nearly zero electron occupation probability. The picture strongly depends on the
crystallographic axis. Crystals appear as a stack of channels to the projectiles. When
hitting a channel, the stopping significantly reduces due to the lower ne, if the solid
is sufficiently ordered and the particles hit in the crystallographic direction (practi-
cally that means normal incidence). In polycrystalline materials, the random grain
orientation hardly leads to fundamental directions (the crystallographic indices with
only ones and zeros) aligned to the surface normal, suppressing the effect. Only
single crystals feature channelling. Channel acceptance angles increase with nuclear
charges Z1 and Z2 of projectile and target, and decreasewith projectile energy, since a
pure coulombic interaction potential between the positive projectile and target nuclei
charges forms the basis of this effect (Nastasi et al. 2014). In practice channelling
yields information in crystallographic analysis of silicon wafers by MeV helium
ions, achieving maximum acceptance angles in the order of 1° or by analysing the
backscatteringof focused electronbeams from the individual grains in polycrystalline
samples, see Sect. 7.1. The contrast derives from the fact that a backscattering into the
acceptance angle (see Rutherford cross-section (3.1) has low probability, hence the
projectile faces much lower stopping power than the backscattered products detected
outside the acceptance angle.
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Fig. 3.9 The electron distribution of silicon in a < 110> †plane. The silicon atoms are clearly
visible, as is the bond between the nearest neighbours. The contour interval is 0.05 e with contours
going from 0.05 to 1.5. The electron density is high near the nuclei and low in between. Reprinted
with permission from Elsevier from Sillanpää (2000)

3.3 Nuclear Reactions

– Stupidity identifies itself by repeating the same action and expecting different
results in each instance.

This sentence, as true it is for real life, completely fails for the sub-atomic level
of physics. The basic principle of quantum mechanics is uncertainty. Therefore it is
indeed logical to expect different outcomes for every single beam particle impacting
onto the same target. This fact should not be over interpreted, though. Summing up
the outcomes over numerous interactions will lead to statistically solid probabilities,
but it’s just probabilities so everything remains possible.

Nuclear reaction cross-sections, or just cross-sections, describe the probability
for a certain interaction pathway to happen. Graphically we can imagine them as a
target discwhichwe try to hit with a projectile. In accelerator applications, usually the
projectile, as a part of the charged particle beam, moves towards numerous targets
atoms which are at rest. Every projectile sees the target discs of the many atoms
it approaches, but still most of the space is empty making it improbable to hit a
target. As a rule of thumb usually only up to a few percent of the projectiles undergo
nuclear reactions. Aswith stopping nuclear reactions probematter, independent of its
arrangement in the form of density or porosity only the amount of passed atoms/area
counts. In fact, generally many different nuclear reactions can take place between
given projectile and target, each with its individual cross-section.

In order to describe the cross-section of a specific interaction, the unit barn (=
10−28 m2) was defined. We could think of it as the area of the imaginary target disc
of each target particle. Its dimension is extremely small, but of course our projectile
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will face many targets on its way, since the atomic density of matter is large. The
probability P of interaction is given by the cross-section σ times the number of target
particles NT per target area A.

P = σ ∗ NT

A
(3.10)

Equation (3.10) applies independently to every constituent (element and isotope)
of the target with their individual cross-section. Different types of reactions can occur
with the same type of target. We already came to know the elastic nucleus scattering
as relevant contribution to stopping at low energies or the elastic scattering with
the electrons as primary contribution to stopping at higher energies. In contrast to
elastic scattering, which conserves the total kinetic energy E, nuclear reactions are
inelastic. Inelastic reactions enable a transfer betweenmass and energy, generally not
conserving the kinetic energy (but of course the total energy). Due to the equivalence
of mass and energy [Einsteins famous (2.6)], the physical law of conservation of
energy remains intact. TheQ-value expresses this energy redistribution in the quantity
of energy transferred in the nuclear reaction (usually in keV). Consequently, elastic
scattering reactions feature Q = 0 while inelastic reactions identify by Q > 0 (mass
consumption) or Q < 0 (mass generation) defined by (3.11) for a 2-body reaction as
depicted in Fig. 3.1.

Q = E = (m1 + m2 − m3 − m4)c
2 (3.11)

Physically, the Q-value results from a difference in the sum of the rest masses,
related to different nuclear binding strength, between the particles before and after
the nuclear reaction. This so-called mass defect calculates from the difference in the
actual nuclear mass from the sum of the masses of an equivalent amount of isolated
protons and neutrons. The highest Q-values are found in reactions of light elements
with 6Li(2H,4He)4He marking the summit with Q = 22.38 MeV. Very thorough
studies with sub-keV precise nuclear mass data exist, summarised in the ongoing
Atomic Mass Evaluation project(Huang et al. 2017) and made publicly available on
numerous websites (e.g. http://oecd-nea.org/dbdata/data/structure.htm or http://nrv.
jinr.ru/nrv/webnrv/qcalc). A few examples were compiled in Table 3.1.

The particles produced in a nuclear reaction can enter excited nuclear states,
similar to excited atomic states, further reducing Q below the ground state mass
difference. The nucleus features a shell structure of protons andneutrons similar to the
atomic shell and its excitations as shown for three configurations of nucleon numberA
=14 (14C,14N,14O) inFig. 3.10 (left).With enough energyprovidedbyQ+E, nuclear
reactions can produce 14N in its excited state as the measurements shown on the right
demonstrates. Here three different proton energies corresponding to three different
Q-values of the 12C(3He,p)14N reaction are detected. Most excited states quickly
decay by emission of a photon with the corresponding energy, but even if the de-
excitation is energetically possible, it can be hindered by the conservation of angular
momentum. Every nuclear level features not only an energy, but also an angular

http://oecd-nea.org/dbdata/data/structure.htm
http://nrv.jinr.ru/nrv/webnrv/qcalc
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Table 3.1 Examples ofmass defects (= binding energy), first 3 excited states, and coulomb barriers
with protons. Protons naturally do not have excited states due to their single nucleon nature

Nucleus P 4He 12 C 18O 18F 180Ta 181Ta

Mass defect (keV) 0 28,296 92,162 139,808 137,370 1,444,662 1,452,239

Mass defect
(keV/nucleon)

0 7074 7680 7767 7632 8026 8023

Nuclear states
(keV); (spin)
(Parity)

0;
1/2+

0; 0+
20,210;
0+
21,010;
0−

0; 0+
4438.9;
2+
7654.2;
0+

0;0+
1982.07;
2+
3554.84;
4+

0; 1+
937.2;
3+
1041.5;
0+

0; 1+
39.54;2+
77.2; 9−

0; 7/2+
6.237;
9/2−
136.26;
9/2+

Proton Proximity
barrier (keV)

181 364 1027 1338 1523 9555 9545

State transitions require spin differences of 1, otherwise the transition is forbidden and long-lived
such as the 3rd state of 180Ta also known as 180mTa. Proximity barriers from (Blocki et al. 1977).
Nuclear levels from NuDat 2.7 [https://www.nndc.bnl.gov/nudat2] and Nubase2016 (Audi et al.
2017)
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Fig. 3.10 Left: Nuclear levels of the nuclei with 14 protons + neutrons (A = 14). 14N represents
the only stable nucleus. All nuclei feature numerous excited states. From every state different
pathways towards the lowest energy state exist via emission of particles and photons. In the ground
state 14O decays via β+, while the first few excited states prefer emitting a proton forming 13N.
From(TUNL Nuclear Data Evaluation Project). Right: 12C(3He,p)14N reaction at E = 2.5 MeV
and 160° producing 14N in the ground and the first two excited states. The emitted proton energy
reduces corresponding to the excitation energy leading to three distinct proton peaks

https://www.nndc.bnl.gov/nudat2
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momentum and parity. Physicists call transitions which have a difference of more
than 1 unit of spin between initial and final level forbidden, since 1 corresponds to the
spin carried (away) by a photon. Nuclear physics apparently makes it increasingly
improbable to carry away more spin. The longest lived example for a forbidden
excited state transition is 180mTa with a difference of 9–1 spin units between excited
and ground state (Table 3.1) resulting in 1.8 * 1015 years half-life, but also other
isotopes such as 99mTc feature practically relevant half-lives due to this effect.

Having fixed target situations in accelerator applications also requires a heavy
moving particle after the reaction in order to conserve momentum. This prohibits
a simple consumption of projectiles with only one product particle, but requires at
least two products (2 variables need 2 equations). But nuclear physics further limits
the possibilities. Nuclear reactions have to follow additional nuclear conservation
rules, most importantly the conservation of particle number and electric charge. The
amount of protons, neutrons, and leptons (namely electrons+neutrinos, seeSect. 4.4)
will not change during the reaction, only a transfer between projectile and target is
possible. The situation changes for β decays since these involve the weak force. In
the β decay the conservation of lepton number becomes important. The conversion
of a proton to a neutron, or vice versa, changes the nuclear charge which has to be
compensated by emitting a positron or an electron, respectively. This violates the
conservation of lepton count, consequently a neutrino or anti-neutrino, respectively,
has to be emitted additionally. Physicists invented the so-called Feynman diagram to
cover all possible reaction and decay routes, but this theoretical construct goes too
far for applications. The actual probability and branching between different possible
reactions is described by the individual reaction cross-sections or decay probabilities.

Not every reaction allowed by the conservation laws will also occur. Reactions
with Q < 0 have a threshold since this missing energy has to be provided by
kinetic energy of the projectile (conservation of energy). A chemist would call these
endothermic and reactions with Q > 0 exothermic, but of course thermal energies
have no meaning for theMeV energies involved in nuclear reactions. Since this book
discusses charged particle beams and target nuclei also consist of similar charged
particles, the electro-magnetic Lorentz force produces a barrier potential for reaching
a nuclear proximity required for nuclear reactions. We can understand the nucleus as
an armoured tank with its electrical charge building some kind of Coulomb armour.
With projectiles of low kinetic energy fired for example from a handgun or a rifle we
cannot penetrate its armour, but the projectile will bounce off. The more punch we
have the higher the probability to penetrate the armour instead of bouncing off. The
same applies to nuclear interactions, the higher the projectile energy, the lower the
cross-section for elastic scattering and the higher the nuclear reaction cross-section.
Table 3.1 lists a few examples of barrier potentials towards proton projectiles derived
from analytical calculations. These barriers scale-up roughly with the number of
protons involved in the reaction. The barrier energies only indicate at which projec-
tile energies nuclear reactions become possible, but any barrier can be tunnelled in
quantum systems. For this reason nuclear reaction cross-sections usually start with
an exponential increase from low energies towards higher energies as the next section
will elaborate.
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3.3.1 Cross-Sections

In applications, nuclear reactions primarily involve ion beams. Nuclear reactions
with electron projectiles require similar energies as with ions in the 10 MeV region,
implying certain application drawbacks connected with the high electron velocity as
discussed in Chap. 2. Furthermore, electron-nucleus reactions are somewhat limited
by the fact that, in contrast to the constituents of ions, electrons are not present in
the nucleus, limiting the possible reactions and products. For these reasons nuclear
reactions with electrons have little application relevance and will not be discussed
in this edition. Anyways, many physical aspects are independent of the projectile
species.

Themagnitude of the cross-sections strongly depends on the projectile energy and
the projectile-target combination. In some cases also the nuclear polarisation state
significantly influences the reaction cross-section (Ciullo et al. 2016). Nuclear reac-
tions require higher energies than the elastic reactions underlying stopping due to the
proximity of projectile and target required by the short-ranged nuclear forces respon-
sible for nuclear reactions (Coulombbarrier effect). The evolutionof the cross-section
σ with the projectile energyE is described by the total cross-section σ (E) (sometimes
also just called cross-section). The example in Fig. 3.11 demonstrates the variation
of the total cross-section of the 18O(p,n)18F reaction over five orders of magni-
tude between 2 and 200 MeV projectile energy. The cross-section first increases,
then reaches a maximum of about 300 mbarn at ≈ 6 MeV, and then decreases
towards higher energies again by five orders of magnitude towards 200MeV. Empiri-
cally, many cross-sections follow a qualitatively similar behaviour with varying peak
cross-section, peak width, and projectile energy at the maximum.
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Fig. 3.11 An extract from the JANIS OECD Nuclear Energy Agency (NEA) (2017) database
comparing experimental and theoretical differential cross-section for the 18O(p,n)18F reaction.
Symbolsmark experimental data, while the line shows calculated cross-sections fromTENDL-2015
(Koning et al. 2015)
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Figure 3.11 compares the semi-empirical cross-section TENDL-2015 (Koning
et al. 2015) with various experimental data. All datasets roughly agree within a factor
three to each other, but TENDL-2015 is unable to reproduce some of the features, for
example the resonances in the 2–4 MeV region, which are, on the other hand, also
ambiguous in the experimental data. The cross-section shows a typical threshold
reaction, in this case Q = −2438 keV as displayed in the mass defect difference
between 18O and 18F in Table 3.1. From the threshold on, the cross-section increases
exponentially due to tunnelling of the proximity potential. For Q ≥ 0 reactions, the
threshold with its exponential increase will adapt to the order of the barrier potential.
For 18O(p,n)18F the Coulomb barrier of 1338 keV is lower than the energy threshold
(see Table 3.1) and therefore not relevant. The existence of resonances arises from
the quantum mechanical particle-wave duality. Each particle has its individual wave
and as soon as projectile and target wave come into contact, resonant overlaps,
similar to the interference of light waves, can occur. The resonances change the cross-
section at specific energies by orders of magnitude, either increasing or decreasing
it. Towards higher energies, generally the cross-section decrease due to reducing
particle wave-function overlap.

A moving projectile defines a unique direction/vector with its direction of move-
ment. This vector represents a symmetry axis for the reaction, leading to a non-
isotropic emission of reaction products. In other words, the cross-section changes
with the angle towards the direction of movement, leading to differential cross-
sections dσ /d� depending on the exit angle of the products, also called reaction
angle, and projectile energy. Figure 3.12 shows an example. The quantity� describes
the solid angle intowhich the given cross-section can bemeasured at the given energy
E and reaction angle. Equation (3.12) allows calculating the solid angle from a given
area A of a sphere of radius r. We can see it as a detector of area A with a distance of
r to the point of reaction.
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Fig. 3.12 Differential cross-section of the 18O(p, 4He)15N reaction for detecting the 4He at the
stated laboratory reaction angles. The resonance at 629 keV is weakest at 90° and increases up to a
factor 4 towards higher and lower angles. At 828 keV the cross-section decreases with increasing
angle by about 20%. Data from Sigmacalc (Gurbich 2016) R-Matrix fits to experimental values
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� = A/r2 (3.12)

Differential cross-sections have a considerably lower level of available data in
the literature due to the fact that determining them requires measuring the moving
products in-situ and not only the amount of present isotopes at some point in time
after the process (ex situ). Total cross-sections rather find use in isotope production
and activation applications, while differential cross-sections find use in analytical
methods due to their connection to detection and reaction kinematics. As in Fig. 3.11,
the differential cross-section in Fig. 3.12 features an exponential growth from the low
energy side and several resonances. In the differential form, a clear dependence of
the resonance height on the reaction angle becomes visible. In σ (E) only the angular
average would be visible, but each resonance varies differently with reaction angle.

The determination of precise reaction cross-sections represents an integral part
of many technological advances in accelerator applications, but also a challenging
one. Physicists try to reduce the effort by determining only the data specifically
required, leaving many holes in the data landscape. In many application cases
discussed later in this book a certain element with several stable isotopes is used
to produce a specific isotope via nuclear reactions. In this case, potentially several
reaction types, usually sets of multi-product reactions such as (p,xn) can lead from
different isotopes to the same nuclide. In this case the individual isotopes reaction
cross-sections were summed up to a so-called production cross-section. Produc-
tion cross-sections are a simplification with several drawbacks, but the advantage of
easy experimental determination using natural isotopic composition. As an example
182Re via protons could occur from natural tungsten from reactions with its various
isotopes via 182W(p,n)182Re, 183W(p,2n)182Re, 184W(p,3n)182Re, or 186W(p,5n)182Re
reactions. If we measure only the final 182Re activity we will not be able to distin-
guish between the isotope specific reactions. In contrast, the reaction cross-sections
could be determined only with an isotopically purified target of a single (tungsten)
isotope.

Unfortunately, theoretical physics has not proceeded to a point where mathe-
matical descriptions for all nuclear scattering reactions exist. We already saw the
Rutherford cross-section in (3.1) with its accurate theoretical description of elastic
scatterning up to a few MeV as an example of such a theoretical description, but the
underlying reaction does not involve a nuclear interaction in the sense of everything
beyond the electrical charge visible to the outside (the billiard ball model). Existing
approaches based on quantum calculations on the quark level (Quantum-chromo-
dynamics) offer the potential for delivering theoretically derived cross-sections, but
the computational effort strongly scales with the number of involved quarks and
brings current supercomputers to their limits, even for hydrogen isotope reactions.
A full solution of the problems probably requires the next level of computer tech-
nologies, more complete physical understanding of the strong nuclear force or of the
four fundamental forces in general.

Nuclear physicists found a set ofmodels describingnuclear reaction cross-sections
to inter- and extrapolate from given experimental data. These semi-empirical equa-
tions combine an adequate theoretical model description of the overall process and



3.3 Nuclear Reactions 145

require fitting of (theoretically) unknown parameters to the experimental data. This
procedure yields a formula for calculating cross-sections over a certain energy and
angular range with a statistical uncertainty given by the data. The problem is, the
range of validity is not known and systematic errors in the experimental data or
model could be unwillingly absorbed in the result. Hence semi-empirical models are
a useful tool for data analysis and computations, but the results must be handled with
care, especially in the extrapolation region where the risk of systematic errors of the
model increases.

σRes(E) ∼ 1

(E − ERes)
2 + �2/4

(3.13)

In general, reaction cross-sections combine resonant and non-resonant regions.
We already learned the start of nuclear reactions follows an exponential increase due
to the tunnelling of the Coulomb barrier. The Breit-Wigner or also Lorentz resonance
function (3.13) describes the probability distribution of resonant interactions. This
cross-section depends on the central energy of the resonance ERes and a resonance
width �. Interferences with the non-resonant part of the reaction can lead to the
typical down-up or up-down resonance where both cross-sections subtract and add
up (or vice versa) before and after the resonance energy. Figure 3.13 shows three
examples of this process with different � in all cases.

The next level beyond this simple analytical fitting requires more complexmodels
implemented in several codes. Implementing the above idea of resonances and the
interaction of particle waves in the sense of the Schrödinger equation leads to the so-
calledR-Matrix algorithms such as the code SigmaCalc (Gurbich 2016). These fitting
algorithms combine the features of several states (3.13) known from experimental
data to a matrix which then allows solving the Schrödinger equation, reproducing
cross-sections in the resonant and non-resonant region over an energy and angle
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Fig. 3.13 Differential cross-section of 12C(p,p0)12C at 165°.Already at 360keV this elastic reaction
deviates from the Rutherford behaviour, in spite of the 1027 keV barrier. The data show several types
of different resonances in the given energy range. Data from R-Matrix fit of SigmaCalc (Gurbich,
2016) to a set of experimental data



146 3 Interaction of Particle Beams and Matter

range given by the experimental data. Nuclear models such as the codes Talys (this is
behind the frequently updated TENDL cross-section database) or Empire (Herman
et al. 2007) follow a different approach by combining a multitude of limited physical
models of specific nuclear interactions. These codes produce reasonable total cross-
sections as we saw in Fig. 3.11, although resonant features might be missing. For
differential cross-sections the agreement significantly worsens. Nevertheless, these
codes often provide the only available data for new developments and over the years
progress on the underlying nuclear data continuously improves the result quality of
these codes.

Knowing what cross-sections are, the applicant will ask how to determine them
experimentally. Cross-sections represent a probability at a given energy. Conse-
quently, we required a defined known energy for the reaction in the target, an identifi-
cation of the reaction, and a detector for counting the amount of reaction products in
relation to the fluence of projectiles. For detecting the occurrence of a given nuclear
reaction we have to detect the products of this reaction. This could be the fast light
products (mostly p, α, and n) or the heavy product, which usually remains in the
target due to its limited range. Stopping reduces the initial beam energy, leading
to a mixing of different energies upon passing a target. This requires either a local
measurement, an energy resolved measurement, or a restriction of stopping by using
thin targets and large detector solid angles for compensation.

Differential cross-sections are mostly measured via thin targets. The exact quan-
tity depends on the element and beam energy, but typically lies in the order of
1 μm thickness. The target thickness induces a contradiction due to the well-defined
energy with thinner samples (lower stopping), but the higher statistics with thicker
samples (3.2). The detection of the heavy products follows the beam irradiation via
ex situ spectroscopy of the decay radiation together with isotope identification via
characteristic spectral libraries available for most isotopes, e.g. (Nucleonica GmbH
2014). This pathway yields differential cross-sections. For non-monoisotopic target
elements, similar reactions potentially lead to the same product isotope. (p,xn) reac-
tions are the prime example, but also other reactions, decays, or impurities lead to
the same problem. In this situation only isotopically enriched targets allow unfolding
the problem with an ex situ analysis.

In-situ detecting the light product via particle detectors suffers from the problem
of catching all angles around the target via physical placement of detectors. A differ-
ential cross-section results from a single detector angle. The in-situ detection allows
for an energy resolved measurement of the products. This additional information in
principle allows unfolding the stopping for 2-body reactions and using thick samples
to generate complete spectra in one measurement. The backward calculation of the
kinematics (see next section) has its drawbacks, but offers the potential for accel-
erated determination of cross-sections via stopping induced beam energy scanning
(Möller S., Analytical continuous slowing down model for nuclear reaction cross-
section measurements by exploitation of stopping for projectile energy scanning and
results for 13C(3He,α)12C and 13C(3He,p)15N, 2017). In the end the best method
derives from the energy range, the required accuracy, and the specific reaction to be
investigated.
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3.3.2 Kinematics

The cross-section describes which reactions occur with which frequency/probability
when a given beam impinges on a target. Kinematics describes how the particles
move into, and, in particular, out of this reaction. The most important choice for
understanding kinematics relates to the inertial system considered. In other words,
what do we see as resting and what as moving? As always in this book, we have
a moving beam particle and a stationary target defining our initial conditions. This
is called the laboratory (Lab) system, the interial system we also reside in. Nuclear
decays feature only a single stationary particle in the beginning, significantly simpli-
fying the situation as no preferential direction or relative velocity exists. Due to this
symmetry, decays simply emit their products isotropically (equally probable in all
directions) and will not be considered primarily in this section.

The Centre-of-Mass (CM) system represents the true physics of each interaction.
In this system both projectile and target move, but with exact opposite momentum.
In collider experiments, two beamsmove towards each other, making the CM system
identical to the Lab system. All other cases require re-calculation of energies, angles,
and cross-sections to switch between both. The Lab system represents our, and in the
case of stationary targets, the targets point of view. For applications we are interested
in the Lab system, since it describes the results we see. Switching from Lab to CM
system reduces the kinetic energy available for reactions. In the Lab system, the
centre of mass, as a point in between projectile and target, has to move towards the
target. A kinetic energy and momentum not present in the CM system. This CM
movement could be understood as a virtual particle carrying the remaining kinetic
energy. The recalculation between CM and Lab and the view of the CM system
belong to the fundamental particle physics or nuclear physics and will therefore be
omitted in this book. For more details on the calculations related to this, the reader
is referred to any standard nuclear physics book.

The physics of nuclear reactions and decay kinematics depends on the number
of involved particles. Each particle existing before and after the reaction has a set
of kinematic properties, namely mass (m), kinetic energy (E), and movement vector
(v) or in other notation energy and momentum vector. In applications only very few
reactions involvemore than twoparticles on the input side, due to the small probability
of coincidence for the usual beam densities. This means we consider reactions of
a projectile with a target. Already in Sect. 3.3.1 we learned about the existence of
reactions with two products such as 181Ta(p, n)181Wwith a light product, the neutron,
and a heavyproduct. Thewordingof light and a heavyproduct originates fromnuclear
reactions favouring to form the strongest bound products (see Fig. 8.1), which are
typically heavy elements. Correspondingly nuclear reactions tend to release neutrons
or protons or if theQ-values are attractive 4He. These so-called 2-body reactions yield
a unique solution for the kinematics of the products. Figure 3.1 depicts the 2-body
situation. The application aspect of the kinematic theory starts when not all kinematic
properties are known. Solving 2-body kinematics relies on the mathematical logic of
requiring as many equations as we have unknowns, see (Zagrebaev et al. 2019) for an
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online tool. The conservation of energy and momentum vector, see (3.14), provides
the equations. Particle 1 (bearingE1, p1) represents the projectile, particle 2 the target
and particles 3 and 4 the products. Particle 3 represents the light product and particle
4 the heavy product particle. Consequently, if we know all kinematic properties of
an interaction except for two (remember each particle bears two properties), the
kinematic equations will yield unique results for the two unknowns.

−→p1 + −→p2 = −→p3 + −→p4
E1 + E2 = E3 + E4 (3.14)

Here the momenta are given as vectors. The pure forward momentum of the
initial situation can receive an additional transversalmomentum component balanced
between the two product particles. Since two particles necessarily lie on the same
plane, the whole situation becomes rotationally symmetric about the axis defined by
the movement vector of the projectile towards the target. This rotational symmetry is
the same as discussedwith the reaction angle in Sect. 3.3.1.With the target (particle 2)
initially at rest, p2 and E2 become zero. Reactions withQ 
= 0 break the conservation
of mass by opening an exchange channel between mass and kinetic energy. We need
to take the transfer between mass and energy via the Q-value into account. This
modifies the conservation laws of (3.14) to

p1 = p3 ∗ cos(θ) + p4 ∗ cos(φ)

0 = p3 ∗ sin(θ) − p4 ∗ sin(φ)

E1 = E3 + E4 − Q

m1 + m2 = m3 + m4 + Q/c2 (3.15)

In production applications we usually know the projectile and target properties,
while in analytical applications projectile and the properties of one or two products
are known from detectors. The solution for a missing quantity, such as a product
energy, is anything but straightforward. According to (Nastasi et al. 2014) Appendix
4, the product energies in the Lab system read in the non-relativistic case with E2=
0:

E3 = E1m1m3

(m1 + m2)(m3 + m4)[
cos(θ) ±

√
m2m4

m1m3

(
1 + Q

E1
+ m1Q

m2E1

)
− sin2(θ)

]2

(3.16)

E4 = E1m1m4

(m1 + m2)(m3 + m4)[
cos(φ) ±

√
m2m3

m1m4

(
1 + Q

E1
+ m1Q

m2E1

)
− sin2(φ)

]2

(3.17)
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θmax = arcsin

(
m2m4(E1 + Q)

m1m3E1

(
1 + m1Q

m2(E1 + Q)

))0.5

(3.18)

sin(φ) =
(
m3E3

m4E4

) 1
2

sin(θ) (3.19)

The book (Nastasi et al. 2014) provides a comprehensive list of kinematic equa-
tions beyond (3.16)–(3.19) in its appendix. The equations include the possibility of
elastic (Q = 0) and inelastic (Q 
= 0) nuclear reactions by allowing for different
masses of incoming (m1, m2) and outgoing particles/products (m3, m4) and a kinetic
energy production or consumption via theQ-value. Equations (3.16) and (3.17) offer
two possible solutions (±) depending on the mass ratio of projectile and target. For
a projectile lighter than the target, both products could be scattered in the forward
direction (think of a grazing impact) or in opposite directions (think of a frontal
impact). If the projectile mass equals the target mass or exceeds it, both products
have to move in the forward direction due to conservation of CM momentum. Only
one solution remains.

In other words, for a given set of properties of one product, the properties of the
second product are strictly defined by the conservation laws. Practically this means,
if we analyse one product for its energy and mass at a certain scattering angle, e.g.
�, and we know the projectile mass, the 2-body kinematics, e.g. in the form of
(3.16), can tell us for example which mass the target had. In this case m2 and m4 are
two unknowns, but we can add the conservation of mass from (3.15) as the second
equation required for a unique solution with 2 unknowns. In some cases logical
exclusion principles yield extra information on the involved particles via conserva-
tion of nuclear numbers (proton, neutron, electron count) or known Q-values. This
recalculation represents an important fact for accelerator based analytics by making
the measurement of different quantities physically equivalent for understanding the
whole reaction.

3-body or n-body reactions such as (p,2n) or (p,xn), respectively, follow different
rules than 2-body reactions. The definition of the kinematic properties of one product
does not define the kinematic properties of the other two products, since these two
have no mathematical rule how to share the remaining energy and momentum.
Energy, momentum, and mass are still conserved, but the additional degree of
freedom yields distribution functions instead of singular values as depicted in
Fig. 3.14. Imagine dropping a bag of food onto a bunch of dogs: All the food will be
consumed for sure, but each time you do it every single dog will receive a different
amount of food. This n-body situation is independent of whether a projectile-target
situation or a decay such as the β− decay emitting a heavy decay product, an elec-
tron, and an anti-neutrino is considered. A prominent example of this problem is
the KATRIN experiment searching for the neutrino mass via detection of the energy
distribution function of the electron emitted in the decay of tritium. The problem
of this analytical experiment lies in the decreasing counting statistics towards the
high-energy end of the electron energy distribution.
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Fig. 3.14 Energy spectrum of the electrons escaping from the β-decay of 210Bi, which is a 3-
body decay (heavy nucleus, electron, muon). Due to their kinematic freedom n-body decays always
feature product energy spectra. The example shows an electron energy Eel = 0.4 MeV would
correspond to a neutrino energy Ev = 763 keV, but all other combinations are also possible

In the distribution function lower energies occur more often, since more allowed
combinations of properties for the other particles exist in this region. Physicists call
this the density of states. Considering the limiting case of one particle receiving the
maximum possible energy (EMax), the other two particles have to feature an exactly
opposite momentum, due to the limited available energy, and only one state of the
whole system remains possible. For simplifying the situation we can reformulate
the problem to a 2-body reaction with an imaginary box combining two of the three
products to one. In any case the physics of ambiguous solutions remains the same,
making n-body reactions an at least unattractive situation for analytics.

3.4 Depth- and Stopping Dependent Reactions

Considering the individual particle picture, a charged particle traveling through
matter constantly loses energy, but it also has a probability to scatter depending on
energy and projectile-target combination. Combining these effects yields the reaction
probability of a nuclear reaction described by the cross-section σ in a depth interval
of z to z1 or energy interval E0 (= beam energy) to E1, respectively. In the energy
picture, the ratio of the reacting ρR to the stopping ρS matter comes into play when
considering compounds consisting of several elements. In these mixtures, all target
particles induce stopping, constituting ρS. Only specific target species interact via
σ , constituting ρR.
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W ≡ z∫
z1

W (E)

x
dx = z∫

z1
σ(E(x)) ∗ ρRdx = ρR

ρS

E0∫
E1

σ
(
E ′)

S(E ′)
dE ′ (3.20)

Equation (3.20) describes the reaction probability W in 3 different forms. First
the reaction in an infinitesimal slice of the target of thickness x integrated over the
considered depth, second the energy (E) dependent cross-section times the reaction
partner density integrated over depth and lastly the depth is solved for the depth
dependent energy via the means of the stopping power S. Setting E1= 0 assumes
full stopping of the projectile in the target, a situation typical for accelerator applica-
tions. For analytical purposes the reaction depth will be important to resolve further
information such as depth and local concentrations of elements and isotopes ρ from
the analysis. For production purposes, the integral over the whole accessible depth,
the range, or the integral over the energy from the initial accelerator energy to zero,
respectively, ismore relevant. In either case, the relevant quantities change over depth
and this location/depth of reactions happening forms a quantity of interest.

Figure 3.15 explains the different parts where stopping and depth define the reac-
tions and whether products remain in the sample or leave it. Projectiles entering the
target at a shallow angle, i.e. α close to 90°, induce reactions closer to the surface.
The depth of the reaction scales according to (3.21). Variation of the impact angle
enables virtually increasing the stopping power of the material for the projectile. The
same scaling exists for the exit angle of the products, enabling differentially changing
the effective stopping of projectile and products, a trick often used to increase for
example the depth resolution of analytical methods. Unintended impact and exit
angle variations relate to surface roughness and porosity.

Fig. 3.15 An exemplary depth dependent scattering situation. The way in and out of the sample
differ depending on impact and exit angles. Leaving the sample requires sufficient product energy,
depending on depth and exit angle of the products
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Fig. 3.16 Depth calculation of the 18O(p, 4He)15N reaction of 988 keV protons in SiO2 showing
the depth profile of reaction probability together with the light product (4He) energy E3 at 150°
scattering angle. The reaction has a range of about 6.2 * 1023 atoms/m2 (recalculate with density
to have it per length) with a lower energy limit of 520 keV due to the onset of the reaction barrier,
see Fig. 3.12

Depth = Range ∗ cos(α) (3.21)

Considering a perpendicular incidence, α = 0, of a proton probing for 18O in a
SiO2 (silicon dioxide) and combining Fig. 3.15 with the (3.19), (3.20), and (3.16)
yields Fig. 3.16. Here we calculated depth in the sample in units of atoms passed vs.
the light product energy E3 at 150° scattering angle for the reaction 18O(p, 4He)15N
(cross-section in Fig. 3.12) with 988 keV projectile energy E1. For recalculation
of this two-body reaction kinematics take care of the units and magnitudes. Note
that the calculated E3 is given at the depth of the reaction, when leaving the sample
additional energy will be lost on the way out. Neither was straggling included.

The figure demonstrates several aspects of depth dependent reactions. The light
product energy changes with depth, but in this case only by about 243 keV, while
the projectile energy changes by 468 keV. The origin of this discrepancy lies in the
reactionQ=3979.8 keV, adding additional energy to the kinematicswhichdominates
the momentum conservation in the two-body kinematics. In the reaction probability,
the cross-section clearly becomes visible, as stated by (3.20). If this reactionwas used
for analytical purposes, the behaviour of the cross-section leads to a low sensitivity
to 18O close to the surface (<15 * 1022atoms/m2). The two resonances at 25 and
50 * 1022 atoms/m2 on the other hand produce strong signals in limited depth ranges.
At depth beyond 62 * 1022 atoms/m2, the sensitive range but not the projectile range
ends, since the cross-section exponentially approaches the reaction Coulomb-barrier.

Applying this setup for example to a heterostructure, which features a significant
18O concentration only at the surface, e.g. due to a 18O tracer gas exposure, only
negligible amounts of detectable products will be produced. The method will not
be sensitive to the sample structure. The method is right, but the projectile energy
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was wrongly configured. Changing the projectile energy E1 from 988 to the 830 keV
(cross-section resonance) optimizes the detection properties via the understanding
of depth dependent reactions.

In most applications, efficient usage of the expensive accelerator technology is a
central aspect. The term efficiency always requires specification of the quantity the
process makes optimal use of. In this case we are looking for energy efficiency, since
it not only determines a part of the application cost structure, but it also defines target
heat load and radiation safety aspects. Here in particular the stopping dependency
of reactions influences the result. Applications usually require a defined amount of
specific reactions, therefore the optimal beam energy and current have to be found
before installing and setting up the accelerator. Considering the full (average) track
of the projectiles via depth dependent calculations allows us understanding this effi-
ciency. Instead of calculating the beamenergywithmaximum reaction probabilityW,
we have to add the input projectile energyE to (3.20) to obtain a quantity representing
production efficiency H:

H(E) = W/E (3.22)

The maximum of (3.22) yields the point of maximum beam energy efficiency. In
other words: For a required reaction rate, corresponding for example to a production
rate of isotope X, the maximum inH represents the minimum in required input beam
power. Technically spoken this energy marks the point where increasing the beam
current yields the smarter choice than increasing the beam energy. The evolution ofH
depends on the fundamental physics of S and σ and their evolution. Mathematically,
the maximum in H corresponds to a zero-point in its derivative. Of course several
local maxima can be present, e.g. when the reaction cross-section σ features several
maxima/resonances.

dH(E)

dE
= 0 (3.23)

Equation (3.23) tells us the shortest and most efficient route to our production
goal by minimizing the costs for the accelerator (Beam energy E0), electrical power
input (E0×current I), and target heat loads (alsoE0× I).Will every reaction have this
zero-point? A zero-point in the slope of H corresponds to the reaction cross-section
decreasing faster than the stopping power.

Let us consider a specific case. For inducing nuclear reactions typically some
MeV of projectile energy are required. For light ions this value lies beyond the
maximum in stopping power (typically between 0.1 and 1 MeV, see Fig. 3.6), hence
the stopping power monotonically decreases for higher projectile energies for any
target. The nuclear reaction cross-section on the other hand can be very dynamic
with resonances or at least a single broad resonance at a few MeV. Figure 3.17
compares S and σ with the 18O(p,n)18F reaction used for producing 18F-PET tracers
(see Sect. 6.1). The reaction features a simple single resonance cross-section and
a threshold around 2.5 MeV, qualitatively similar to many other reactions, check
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Fig. 3.17 Plot of the evolution of stopping power and nuclear reaction cross-section of 18O(p,n)18F
used for the production of 18F labelled medical products in 18O enriched water (H18

2 O)

(OECD Nuclear Energy Agency (NEA) 2017). At low energies, S decreases while
σ increases, but above the maximum in σ at 8 MeV both decrease.

Ok, if both values decrease we have to dig in deeper. The ion stopping power of
(3.6) demonstrated a decrease of stopping power with something like ln(E)/E, while
the resonance of cross-section in the form of (3.13) decrease with 1/E2, a faster
decay. The ratio σ /S then scales with 1/(ln(E)E) resulting in a monotonic increase of
the integral over this ratio. The integral of this function yields ln(ln(E)). Taking into
account the proportionally to the beam energy increasing invested energy of (3.22)
we end up with ln(ln(E))/E. These functional shapes we will also see in Fig. 3.18.

What can we do for increasing the output of a given reaction when beam energy
is fixed? In numbers this efficiency means: At 12 MeV the reaction probability
reaches 0.33% compared to, for example, 0.46% at 24 MeV. With 24 kW beam
power (12 MeV/2 mA or 24 MeV/1 mA) we obtain 4.1 * 1016 reactions/s at 12 MeV,
but only 2.8 * 1016 reactions/s at 24 MeV. The 46% higher efficiency at 12 MeV
comes along with less unwanted activation, but also about 3 times increased power
load on the target window required for the water target.

Figure 3.18 compares the energy efficiency of the 18O(p,n)18F reaction by produc-
tion per projectile and per MeV invested energy. The figure shows a strong increase
of efficiency starting at a fewMeV, originating from the simultaneous decrease of the
stopping power and increase of the reaction cross-section as displayed in Fig. 3.17.
Between 20 and 30MeV this increase levels off at a reaction probability in the typical
order of 1%, here 0.5–0.6%.While the reaction probability still increases slowly, the
efficiency factor H stagnates, its derivative approaches zero. At this point the accel-
erator layout would suggest rather increasing the accelerator current than its energy,
since both deliver an identical benefit for the production rate. Increasing the beam
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Fig. 3.18 The integration of (3.20) from the energy given on the x-axis down to zero represents the
reaction probability for the 18O(p,n)18F on the whole path of the proton projectile till its stop in the
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with a maximum in H at 12 MeV

energy yield more problems of radiation protection and device cost, while increasing
the beam current does not.

For electrons, the situation is upside-down and we see a minimum of the stopping
power in the order of 1MeVwith increasing stopping power towards higher energies.
When considering the energy efficiency of a reaction this induces a generally bad
situation, since theminimal stopping power coincides with the lower limit for nuclear
reactions. To be fair to the electrons: Electron stopping powers are lower than ion
stopping-powers in the considered range, see Fig. 3.6.

Practical and economic aspects limit the maximum beam energy in applications.
Physical limits require given minimum energies in order to induce the foreseen
reactions as well as reach required penetration depth’. In this section, we learned
how to navigate in the grayscale between these extremes via the physics of depth
dependent reactions. As an example consider an electron microscope: At higher
electron beam energy additional elements become visible by enabling more X-ray
transitions (Fig. 3.4), but if the measurement aims at analysing a thin layer, e.g. a thin
coating on a thick substrate, higher beam energy would finally lead to information
mixing of layer and substrate, since increasing electron energy increases the projectile
range, penetrating the thin layer.



156 3 Interaction of Particle Beams and Matter

3.5 Computer Modelling

Computer modelling of particle-matter interaction processes has become the main
tool to derive quantities for accelerator applications, radiation protection purposes,
and the layout of new devices. The complex equations presented in this chapter
require a computer based treatment due to the large amount of considered reac-
tions, individual properties, and experimental data input. In real world problems, the
geometry and time-evolution add additional complexity to the housekeeping of the
processes. In spite all these complications, modelling based on the best knowledge
usually hits the reality within a factor 3 and often even better. Therefore computer
models enable a full construction of basically all applications presented in this book
in the idea of computer aided design (CAD).

Unfortunately, no single software combining all accelerator application aspects
exists so far, but different programs need to be combined as modules for modelling
an application setup. This starts with beam optics (see Sect. 2.3), thermo-mechanical
modelling (e.g. Sect. 2.6), radiation protection (Sect. 2.7), and ends with beammatter
interaction, namely stopping, nuclear reactions, detectors, and decays.

Let us first consider the peculiarities of a practical situation in a qualitativemanner
using an example featuring the main points of many applications. The considered
example is a spallation neutron source with a proton beam of some hundred MeV
and a tungsten target where the beam releases neutrons via (p,xn) reactions. These
neutrons supply several experiments including amedical patient treatment. The beam
produced in the accelerator part travels towards the neutron production target through
stainless steel 316 vacuum tubes. The beam has a finite emittance; hence at least a
minute fraction of the beam continuously hits the beam tube, considering a normal
distribution. For themachine layout,weneed to know if itwill be possible to exchange
steel parts for maintenance (radioactive inventory limits) and how far away vacuum
pumps and electronics have to be placed in order to survive the radiation. At the
target, the beam impacts the tungsten metal and suffers the continuous stopping. As
we learned in the last section, relevant changes of beam energy and nuclear reac-
tion probability occur already on the μm scale. Furthermore, tungsten consists of
five natural isotopes (+impurities) each having around 20 different reactions above
100 MeV. For the treatment of patients this primary spectrum, originating from the
proton reactions, is too broad. The primary neutrons interact with their surroundings,
leading to thermalisation, reactions, and broadened neutron spectra. The produced
neutrons on the other hand interact only weakly, with relevant changes on the 10 mm
scale. A clever placement and material selection of structures and coolant flows
significantly affects this spectral broadening and reduces the dose to the patient for
a given treatment result. Finally, the neutrons interact with the patient. To allow the
patient to survive the treatment only limited radiation doses/exposure times can be
applied in order to avoid introducing more problems than we solve. This knowl-
edge needs to be present before treating the first patient, but it strongly couples
with the building and accelerator and target layout. Both can hardly be altered after
installation. Simulations and also practical testing of components become necessary.
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Following the nuclear interactions of potentially thousands of particle species
(currently over 3000 isotopes are known) in 4D space-time is a mathematical and
computational challenge. Two main mathematical approaches allow for a solution
of these systems. In the first approach, large systems of analytical equations such as
(3.24) enable an exact and computationally inexpensive solution on the time scale
of minutes. The equation calculates the density N of all n involved isotopes/nuclides
over the application time t via losses by exponential decays with half-lifes λ and the
production from the decay of mother nuclides. Unfortunately, these advantages are
countered by the difficulty to include complex geometries in the equations. Reason-
able approximation of real situations by idealised physics allows an application of
the analytical formalism to real situations. In our spallation example, the activation
of the beam tube forms such an example. The produced quantities of activity are
small, do not couple back to the beam or its surroundings and the distribution is
homogeneous along the beam, since only very few beam particles get lost to the tube
wall. The coupling of geometry to the nuclear interaction remains small, allowing
neglecting it and assuming the beam tube as a point object receiving an input flux
of ions. Even if additional interaction hot-spots such as apertures exist, these can be
treated independently with an individual equation set.

Nn(t) =
n∑

i=1

⎡
⎣Ni (0) ∗

⎛
⎝n−1∏

j=i

λ j

⎞
⎠ ∗

⎛
⎝ n∑

j=i

(
e−λ j t∏n

p=i,p 
= j

(
λp − λ j

)
)⎞

⎠
⎤
⎦ (3.24)

In the second, so-called Monte-Carlo approach, codes simulate the hypothetical
life of single particles through the given application geometry. This includes itsmove-
ment, reactions and daughter particles. When interacting with matter, the particles
have a certain probability of having one or another reaction and it is just decided by
the throw of a virtual dice which of those marks the particles destiny. Naturally, less
common situations become statistically underrepresented but yet may be important.
Consequently, an accurate result requires a large amount of test particles to catch
all possible situations, but the statistical question mark will always remain relevant.
Furthermore, the time domain becomes difficult to access, since every point in time
requires a simulation of the full geometry. In the spallation example, all site and
construction related aspects are best solved using Monte-Carlo methods. Running
several million test particles through the building will produce as many different
particle histories, but most of the building volume will also get probed by these test
particles. The simulation approximates the building and the beam conditions to be
constant.

For calculating the inventory of daughter nuclides following a nuclear reaction
process, the individual decay pathways of each nuclide have to be followed and
the quantity of each daughter depends on the quantity of all its ancestors due to
the connection by decay. The problem arises not only after a beam irradiation,
but also during the beam irradiation since these daughters can also react with the
beam forming new nuclides otherwise not accessible. This further complicates the
full process to a complex coupled equation system. The Bateman-equation, (3.24),
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describes the situation without source term (production by beam interaction) with
the half-life time constant λn, the quantity Nn of a certain nuclide n. The decay chain
starts with the mother nuclide n = 0 at time t and evolves for all the daughters i.
Adding a source term and a physical library of nuclide data to this equation leads to
the basis of a first application code such as FISPACT-II (Culham Centre for Fusion
Energy 2018).

FISPACT-II implements the mathematical solution of (3.24). Equation (3.24)
also demonstrates the strength of this approach, since changing the decay time t
is straightforward in this approach and enables a direct calculation of the isotope
specific inventory over time. Monte-Carlo approaches such as the freely available
GEANT4 from CERN (geant4.web.cern.ch), FLUKA (www.fluka.org), or MCNP6
(laws.lanl.gov/vhosts/mcnp.lanl.gov) of the large-scale beam-matter interaction have
their strength on particle transport and interactions in complex geometries. When-
ever time dependence is of minor importance, for example in shielding calculations,
detector sensitivity studies, or planning of medical irradiations, the Monte-Carlo
approach reveals its strength in geometrical calculations.

These large-scale codes include vast amount of physics coupling all possible
radiation fields (photons, ions, neutrons, electrons), but in particular for analytical
applications the physics of these code packages remains too general. These applica-
tions require specific codes including only the physics and technical aspects relevant
to a single task, while trying to maintain a certain level of productivity in the form of
device control, data frameworks, user interfaces, and computational speed. Atomic
scale effects such as displacement damage, collision cascades, and surface sput-
tering exploiting the Monte-Carlo approach in the so-called binary collision approx-
imation are SRIM (srim.org) and SDtrim.SP (www2.ipp.mpg.de/~stel/SDTrimSP.
html). Analysis codes for analytical methods integrate specific material models with
differences connected to the sensitivity of the correspondingmethod. The small angle
X-ray scattering code SASfit (sourceforge.net/projects/sasfit) for example includes
>200 structuralmodelswith physical relevance and separable impact on the scattering
spectra in connection with a fitting algorithm adapted to consider the relevant parts
of the spectra. TheMeV ion-beam analysis codes SimNRA (Mayer, SimNRAUser’s
Guide IPPReport Number: IPP 9/113, 1997) andNDF (www.surrey.ac.uk/ion-beam-
centre/research-areas/ion-beam-analysis) on the other hand apply a layered sample
structure with elemental concentrations individual to each layer, since the method
features a depth resolution with elemental sensitivity. For methods with industrial
maturity such as electron induced X-ray emission (a.k.a. energy-dispersive X-ray
spectroscopy) instrument manufacturers provide their own codes.

All of these codes and packages represent application specific compendia selected
and optimized for a more or less specific task. Adding a source term to the equation
system or simulating a nuclear reaction spectrum or whatever these code packages do
relies on codes describing the basic physics of ion-matter interactions. This chapter
demonstrated the complex physics behind beam-matter interactions, namely stop-
ping, reactions/interactions, and kinematics. Starting already at the stopping power
complex physics and numerous experimental data have to come together. For this
topic several codes exist such as A-star and P-star for protons and α-particles and

http://www.fluka.org
http://www2.ipp.mpg.de/%7estel/SDTrimSP.html
http://www.surrey.ac.uk/ion-beam-centre/research-areas/ion-beam-analysis
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e-star for electrons (National Institute of Standards and Technology 2019). The most
common code for arbitrary ions is the program SRIM(Ziegler et al. 2008) with the
latest version of 2013 being available freely on www.srim.org. SRIM allows also for
integration in user programs with the help of its sr.module outputing stopping powers
if given projectile and target properties. The SRIM software features a large set of
examples and input data comparisons proving its accuracy in the few percent range
down to a few keV/amu. For electrons the program CASP (http://www.casp-pro
gram.org/) provides stopping powers, while CASINO (http://www.gel.usherbrooke.
ca/casino) already extends beyond pure stopping and straggling. The Nucleonica
database (Nucleonica GmbH 2014) provides a compendium of codes for electrons,
ions, and also positrons and muons.

Calculation of nuclear reaction cross-sections remains a major challenge to date.
It has to be distinguished between ab initio codes calculating the nuclei on the quark
level and nuclear model codes based on a semi-empirical approach. The former
include extreme amounts of interactions, since all quarks of a nucleus interact with all
other quarks and gluons via the physics of quantum chromodynamics (QCD). These
ab initio codes do not require input other than fundamental physical constants. Unfor-
tunately, current computational technology limits the capabilities of QCD calcula-
tions rendering it currently irrelevant for the complicated resonance cross-sections
of elements such as lithium and beyond. In contrast, nuclear model codes allow
for calculating reaction cross-sections for any projectile-target combinations, but
they require input about the structure of the involved nuclei and physical models of
the involved interactions. These structural data include experimentally determined
energy level schemes and state lifetimes peppered with the typical experimental
limits and accuracies. Themost famous codes are Talys (www.talys.eu) and EMPIRE
(www.nds.iaea.org/empire). The Talys code supplies the TENDL database, often
cited here, which contains total and differential cross-sections for nearly all possible
reactions.

Many of the abovementioned software packages do not feature full graphical user
interfaces (GUIs), but rather rely on a scripting language for user input. Program-
ming becomes a central skill of a least higher level accelerator application experts and
researchers. This relates not only to the operation of codes, but also post-processing
of data such as fitting and extraction of results. The simple adjustment of a beam
position requires only three points for a skilled operator able to apply a polynomial
fit of 2nd grade to the data, while the simple non-programming skilled approach
might require acquiring a dozen data points, stepwise approaching a minimum value.
Programming or data science, respectively, nowadays often termed artificial intelli-
gence “AI” in business presentations, becomes the accelerator experts sixth sense.
The author recommends to any reader from personal experience to acquire solid
programming skills when working in this field. Even human resources departments
value the programming skills of accelerator physicists due to this natural connection.
The programming language Python has proven to be maybe the most valuable option
in the recent years. Not only is the syntax quite flexible and straightforward and its
whole is based on open source, but most importantly it features numerous packages

http://www.srim.org
http://www.casp-program.org/
http://www.gel.usherbrooke.ca/casino
http://www.talys.eu
http://www.nds.iaea.org/empire
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with pre-programmed complex functions for mathematics, data handling, and so on.
Some of the graphs presented in this book also found on Python codes.

The above code generates Fig. 3.18 from two files containing plain text lists
of discrete points of the corresponding projectile energy dependent reaction cross-
section and stopping power. The program interpolates these discrete lists forming
integrable functions. The integrals are evaluated in a range of 1–60MeV and plotted.
Packages such as SciPy (Jones et al. 2001) andNumpy (Walt et al. 2011) ease this task
by providing ready to use functions for most mathematical tasks. Packages for the
export and complex plotting of the data exist allowing for fully automated parameter
studies and acceleration of repeated analysis tasks. Even nuclear data packages exist
for python integration.
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