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RBSTRACT

This report presents eguations that allow
an approximate evaluation of the limiting beam
current for a large class of radio-frequency
linear accelerators, which use quadrupole
strong focusing. Included are the Alvarez,
the Widerde, and the radio-frequency quadrupole
linacs. We obtain the limiting-current
formulas for both the longitudinal and the
transverse degrees of freedom by assuming that
the average space-charge force in the beam
bunch arises from a uniformly distributed
charge within an azimuthally symmetric three-
dimensional ellipsoid. The Mathieu equation
is obtained as an approximate, but general,
form for the transverse equation cf motion.
The smooth-approximation method is used to
obtain a solution and an expression for the
transverse current limit. The form of the
current-limit formulas for different linac
constraints is discussed.

I. INTRODUCTION

Maschkel obtained current-limit formulas for a linear accelerator by
assuming spherical beam bunches and by applying the thin-lens approximation to
represent the quadrupole focusing. Much previous work has been done using the
three-dimensional ellipsoid model, which has been reviewed by Gluckstern.2
In this report we use the three-dimensional ellipsoid model to approximate the
beam bunch in a linear accelerator. Then we derive a transverse equation of
motion in the form of the Mathieu equation, which has approximate validity for
a variety of linac configurations with guadrupole focusing, includirg the
Alvarez and Widerde linacs with both the FODO and the FOFODODO polarity group-
ings and the radio-frequency quadrupole (RFQ) linac.3 For the RFQ, which



provides a continuously distributed radial focusing force, this approach should
be more applicable than the thin-lens approximation. Transverse and longitu-
dinal current-limit formulas are obtained from a smooth approximation. These
equations are intended to provide a useful guide for estimating the beam-
current capacity in a linear accelerator, but not as a substitute for a more
getailed computer simulation.

In Sec. II we derive the transverse limits; in Sec. III we obtain
longitudinal limits. Section IV contains a discussion of the application of
the formulas. Appendix A contains a brief review of the results of the three-
dimensional ellipsoid model. Appendix B g ves some Mathieu equation prop-
erties. Appendix C summarizes the notation used in this report.

II.  TRANSVERSE SPACE-CHARGE LIMIT
We use a model of a uniform charge distribution within a three-

dimensionsl ellipsoid to represent the space-charge force within a beam bunch,
(Appendix A), but we do not include the interactions between bunches. The

equation of motion for x is
0
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A similar equation can be written for y. The last term in £q. (1) is the
space-charge term. Here I is the beam current in amperes averaged over a
radio-freguency (rf) period assuming all buckets are filled, Zy = 376.73 Q2

is the free-space impedance, r and b are the transverse znd longitudinal
semiaxes of the ellipsoid, and f(p) is the ellipsoid form factor given in
Appendix A. The beam bunch will be represented by an ellipsoid, whose
dimensions are averaged over a focusing period. The effective ellipsoid is
therefore azimuthally symmetric about the beam axis. The guantity kt’ which
has the dimensions of wave number, represents the quadrupole focusing term and
is assumed to be a periodic function of s. Within the focusing elements, it

can be expressed as
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where a is the semiaperture, B is the pole-tip magnetic field, and V is the
voltage between adjacent poles. The second term within the brackets of Eg. (1,
represents the first-order radial-force effect associated with the presence of
the linac rf longitudinal field. We express the period of the focusing

elements as
L = N8A - (3)

The guantity N depends upon the type of linac and upon the polarity grouping
of the focusing elements, and is given in Table 1. For the Widerde linacs we
assume that quadrupole magnets are placed only in the grounded (alternate)
drift tubes, whereas for the Alvarez linacs we assume that every drift tube
contains a gquadrupole.

Now we will assuine that the fractional change of By is small over a
transverse oscillation period. We make a Four er expansion of the function
2. For convenience we take the origin s = 0 to be midway between focus-

k
t »
ing elements of opposite polarity so that kt2 is an odd function of s.

We introduce the dimensionless variable n where
n=s/L . (4)

TABLE I
N FOR DIFFERENT LINAC CONFIGURATIONS

Linac Types Polarity Grouping N
RF Quadrupole FD 1
-1 Widerde FODO 2
n-1 Widerde FOFGDODO 4
n-31 Widerde FODQ 4
n-3n1 Widerde FOFODODO 8
Alvarez FODO 2
Alvarez FOFODODO 4



Then we can write
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Equation (1) then becomes
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In Eq. (9) we made the approximation of replacing the phase ¢ with the syn-
chronaus phase bg. We do not neglect the rf defocus parameter Arfs

which can become important either for low velociti=s or for high accelerating
fields. We now assume a hard-edged model for the focusing quadrupoles, so
that the field strength is constant within a quadrupole and zero outside.
This hard edged model is applicable for focusing provided in conventional
linacs, but does not apply for the RFQ structure, which we will discuss
separately. We assume that all quadrupoles within a focusing period are of
tte same length and are equally spaced. We introduce a filling factor A,



which we define as the fraction of the focusing period that contains gquadrupole
elements. For the FODO polarity grouping, the Fourier coefficents are

2
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For the FOFODODC case we obtain
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To obtain simple equations, we now ignore all terms in the expansion of Eq. (7)
except for the leading m = 1 term. Then we obtain
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where from Egs. (2), (5), (6), (11), and (12) we have
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where x is a fccusing efficiency factor given by
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Equation (13) also describes the transverse motion in the RFQ.4 The electric
quadrupole value for eg, given by Eq. (14), can be used for the RFQ if

N =1 and if x is interpreted as the focusing efficiency parameter given :in
Ref. 3.



Equation (13) has the form of the Mathieu equation. In the smooth

approximation the solution 155

x = X(7) (Bx(m)l/z , (16)

wnere X(n) varies slowly over a focusing period and B, (n) is the period-
ic betatron function, which has the same period as the focusing elements.

The function X(n) satisfies the equation

X 20,
+0°X =0 (17)

where o is the smoothed phase advance per focusing period given by
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8
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The solution to Eq. (17) can be written as

X « cos (on + &) . (19)

The betatron function in this approximation can be expressed as

”
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and the beam envelope radius r, can be related to the emittance € and the
betatron function by
2

r, = EBX . (21)
From Eq. (18) we may write
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where o, is the phase advance per focusing period for zero current given by
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and My is discussed below. The Mathieu equation stability diagram,
(Appendix B) becomes a universal stability diagram for all the linacs

discussed in this paper.
The transverse space-charge parameter M is the ratio of the space-

charge force to the smoothed focusing force and is given by

s¢
. (24)

If we substitute Eq. (10) into Eg. (24) and solve for the current, we obtain
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We assume that the radius r of the ellipsoid representing the bunch is given
by the geometric mean of the maximum and minimum semiaxes r, and r_ over a
focusing period. Thus

2

T
Loy = _%%. , (26)

where ¢ is the envelope modulation factor given from Eq. (20) and (21) by
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lotice that ¢ does not depend upon the beam current.
As the beam current increases, the radius of the beam bunch also

increases, and eventually the beam will be limited by the aperture. Thus, at

the current limit, we assume

(28)

From Eq. (20) we can obtain an expression for the geometric mean of the max-
imum and minimum of the betatron function, which is approximately

1/2

B =(88) = (29)
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To estimate the buneh length 2b at the transverse current limit, we
assume that the bunch is also near the longitudinal current lianit. Then a
bunch length that is consistent with other studies2 for beams near the

longitudinal 1limit is

b=grn 9| (30)
27

Because u is the ratio of the space-charge to the focusing force,
we would expect physically that Ui should not exceed approximately
My = 1 for stable motion. Recent numerical studie56 suggest that in the
presence of space charge, the necessary requirements for statle motion in a
linear accelerator without large emittance growth are
o, < /2 (31)
and
%

We recognize that future studies may modify the best estimates for these
numbers. The limit given by Eq. (32) can be combined with Eq. (22) to yield a

maximum for the space-charge parameter given by

2
w=1- [ -0 (33)
o .
min
where
(0/0) = 0.4 (34)
min

As the limit given by Eg. (34) is approached by increasing the beam current, a
large emittance growth rate will lead tc an increase in the beam size and beam
losses will occur when the beam hits the aperture. Wwe assume that the trans-
verse current limit is determined by this effect. Then, if we substitute

Eqs. (26), (28), and (30) into Eq. (25) we chbtain

2,..3 2 2
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where u, is given by Eq. (33) and og is given by Eg. (23), but should
nct exceed the approximate li+it given by Eq. (31).

Equation (35) is the desired transverse current-limit formula. It shows
the dependence of the maximum beam current upon the linac parameters. However,
if additional constraints are imposed upon these parameters as they vary, it
is useful to express the current limit explicitly in terms of these constrained
quantities. The form taken by the equations will look entirely different when
different constraints are applied. This was emphasized by Reiser7 in con-
nection with the scaling of beam-transport current limits. A discussion of
two important constraints follows.

Case 1: Let us assume that the maximum phase advance 0g = n/2 is
always maintained. Equation (35), which explicitly contains 94 already
is in a convenient form to show how the current depends upon the other pa-

rameters when % is held fixed.
According to Eq. (35), increasing the value of a/A will increase the

limiting current. However, as a/A increases in a linac, the magnitude of

the on-axis accelerating field decreases. This effect is sometimes described
as a reduction in transit-time factor. The on-axis transit-time factor T is
given by Eg. (50) in Sec. III. A reduction in T causes an undesirable reduc-
tion in the rate of acceleration and, as we will see later, in the longitudinal
current limit. If we assume somewhat arbitrarily that the maximum acceptable

aperture is

BA (36)

P = =

10 °

we can get an estimate for the magnitude of the current given by Egq. (35).
To estimate the envelope modulation factor ¢ when 0g = n/2, let us
ignore the rf defocus parameter in Eq. (23). Then from £q. (27) we get

¥ =2.1 . (37)

Given Egs. (30) and (36), the choice |¢s| = 2n/10 and f(p) = 1/3 cor-
responds to a spherical bunch. These substitutions into Eq. (35) yield for an
ion of mass number A, the expression

A 3
= 4 [ BY)~
I 3.65 x 10 ,Jt[ q} Nz [amperes]. (38)



This is of the same form as Maschke's result,l which was derived for a
spherical bunch using a thin-lens approximation for the focusing. Our coef-
ficient is smaller than his because of our use of average rather than instanta-
neous current.

Case 2: We now assume that practical upper limits on the focusing fields
prevent the phase advance oq from reaching its maximum limiting value, and
that the focusing field itself is constrained to equal some specified maximum
practical value. By substituting Eqs. (14) and (23) into Eg. (35), we can
show that for magnetic-quadrupole focusing

2 3 2 4 2
: - HoC e_q_} By | NxB)® | B, + 8T . ' (39)
0 0
For electric-quadrupole focusing we obtain
2 4 2
o % (e By o _| () [!]2 O + &b | o
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If the rf defocus parameter is small, the last factor in brackets in
Egs. (39) and (40) is near unity. However, the rf defocus term can become
important especially for applications at low velocities and at high accelerat-
ing fields. The most obvious differences between the case 1 current limit of
Eq. (35) and the case 2 formulas of Egs. (39) and (40) are in the charge-to-
mass ratio dependence and in the dependence upon rf wavelength. Higher trans-
verse current limits are obtained at lower frequencies for case 2.

Equation (40) is valid for the RFQ if N = 1 and if‘Arf is evaluated
from Eqg. (9) using the results for the RFQ given in Ref. 3 that

2AV
Ey = B (41)

where A is the acceleration efficiency parameter, and that for the synchronous

particle

T =

13

(42)
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The acceleration efficiency is typically about A = 0.5. The factor x in
Eq. (40) is the focusing efficiency also given for the RFQ in Ref. 3.

Two important approximations made in this treatment were the neglect of
higher order terms in the Fourier expansion of the function kL2 for cor-
ventional linacs and the use of the smooth approximation. The absence of the
higher order terms cave an equetion of motion in the form of the Mathieu
equation. The smooth approximation applied to this equation allows us to
write some simple formulas for the important quantities that appear in the
theory. As is discussed by Bruck5 and Reiser,7 the accuracy of the smooth
approximation improves as the phase advance per focusing period decreases.
Equation (23) is expected to be accurate to better than 10 to 15% for
phase-advance values less than 90°. Because of the limitation expressed by
Eg. (34) and because the phase advance always decreases as the beam current
increases, we expect that the smooth approximation will be satisfactory to
obtain useful formulas.

Within the smuoth approximation it is easy to study the effect of
neglecting the higher order terms of the Fourier expansion. The results show
that the accuracy decreases at very small values of the filling factor. How-
ever, for 0.1 < A £ 1.0 and both the FODO and FOFODODO cases, this assumption
causes an error in the phase advance that is always less than about 16%. The
combined effect of both assumptions can be tested using the example of the
FODO polarity grouping at Og = 90® and A = 1/2. When we compare the
formulas in this paper with the exact results, we find that the phase advance
calculated in this paper is in error by 11% and the beam erivelope is in error

by 17%. For smaller phase advances the accuracy will improve.

ITI. LONGITUDINAL SPACE~CHARGE LIMIT

The guasi-periodic rf electric force applied to the beam provides the
longitudinal focusing. To a good approximation we can replace the real
periodic forces by a continuously acting average force. From the three-

dimensional ellipsoid model we write the smoothed longitudinal equation of

motion2 as

2
1 d 334d 2 (89) -
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where A¢ is the particle phase relative to the synchronous phase ¢g. The

longitudinal wave number is given by

. 2 _ —ZTrquOT sin :bs 4a)
L o c2l63y3
0
where E4 is tne average axial field amplitude and T is the transit-time
factor.
The longitudinal space-charge parameter Mg is given by
. 2 B 3ZOqu>\f(p) i
L 22 .23 (45)
AWmoc r b8y

If we solve Eg. (45) for the current, we obtain

gr>  1’b 1 (46)

I
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As in the transverse case, because My is the ratio of the spaca-
charge force to the focusing force, we would expect physically that Hy

should not exceed approximately My = 1 for stable motion. Based upon
results reported in Ref. 6, we will assume that Egs. (31) and (33) also apply
for the longitudinal space-charge parameter My and the longitudinal

phase advance for zero current. Thus, we will assume that the longitudinal
space-charge limit occurs when Mg = u.84, and that the zero current
longitudinal phase advance per focusir.j period should not exceed n/2.

In tems of the smoothed phase advance per period A we require

g, = keBA < m/2 . (47)
We will eveluate the bunch length and radius for the longitudiral current
limit just as we did for the transverse current limit. These values are given
in Egs. (28) and (30). The use of Eq. (28) for the beam radius at the lon-
gitudinal limit is a good approximation when the beam bunch is not too far

from the transverse limit.
A better feeling for the explicit functional dependence of this current

limit upon the parameters can be obtained by using the approximate form for
the ellipsoid form factor given in Appendix A as

12



I (48)

f = 5

W

By substituting Eqs. (48), (26), (28), and (30) into Eq. (46) we obtain the
approximate result
2 .
. ZUQ BEOTa ¢S 131n ¢S| ' (49)
L Z0 l‘1)1/2
For the transit-time factor of either an Alvarez or a Widerde linac, we use

the axial transit-time expression

_ __sin (1g/B)) ,
T= (Tg/BA) I, (2ra/BX) (50)

where g is the accelerating gap. The quantities Eg and T for the RFQ struc-
ture are given by Egs. (41) and (42).

Equations 46 and 49 have the form which corresponds to the case 2 con-
straint discussed for the transverse current limit, when the focusing limita-
tion is due to the magnitude of E,» Tather than the longitudinal phase
advance per focusing period o, . As can be seen from Eq. (9) large
values of Es will increase the value of Brfs which may greatly reduce
the transverse space-charge limit as given by Eqs. (35} and (40). For large
enough values of Eys the longitudinal focusing will be iimited in accordance
with Eq. (47), and the form for the current limit becomes

2
2.3 2
B 4nu2m0c Yr bo2

Q=

(51)

I 3
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where we use the maximum oy value, assumed here to be o, =7/2. Equation (51)
corresponds to the case 1 situation, that was discussed for the transverse

current limit.

Iv. DISCUSSION
We have obtained some current-limit formulas for linear accelerators and

have expressed them in a form that is relevant when the phase advances per
focusing period at zero current are less than n/2. The transverse current
limit was obtained and current-limit formulas were written for twu cases. In
case 1, the current was expressed in terms of a fixed phase advance O
whereas for case 2 it was expressed in terms of a fixed focusing field.

13



Equation (35) expressed the case 1 current-limit formula. The case 2 current
limit was given by Eq. (39) for magnetic focusing and by Eq. (40) for electric
focusing. Equations (51) and (46) express the corresponding longitudinal

space-charge limit cases.
In this report the concept of the current limit corresponds to the max-

imum current that can be carried through the accelerator. For the transverse
case this corresponds to invoking Egs. (33) and (34). For that current limit
to be realized by a given input beam, without undue particle loss, it is nec-
essar that the beam bz matched to the accelerator and that the beam emittance
not be too large. To quantify this idea, assume that the current limit is
reached abruptly when the current is large enough so that o = 0.4 Og- The
normalized acceptance cf the linac can be written as

2
ad
L ‘ (52)

|

o=

<

From Eg. (22) we can write

w=1- (9‘—)2 : (53)

%

where aq is the acceptance at zero beam current. Thus, as the beam currert
increases, both the phase advance o and the acceptance o will decrease At the
transverse current limit where o = 0.4 Ogy @ = 0.4 0 results. The

poor emittance case is when € > 0.4 ag. Then beam will be lost on the
aperture for currents even below the limiting current. For the good emittance
case, when ¢ < 0.4 %gs the radial beam loss will be small for currents

below the 1limiting current. In the poor emittance case, the maximum y for a
given final emittance € is obtained by subsituting the equation € = o into

Eq. (53). This results in the relation given by Reiser’ that

€ 2
wma-(5) G0

The current-limit formulas given here must be evaluated at a specific
energy. However, it is to be expected that a finite length of the accelerator
equal to one or more cycles of transverse or longitudinal oscillation will be

14



required to establish the current limit. Because the energy is always chang-
ing, it is difficult in a real linac to maintain a fixed value for the current
limit over this distance. Even sou, we have found the current-limit concept
useful. From Egs. (35) or (39) and (40) for the transverse limit, and from
the approximate form of Eq. (49) for the longitudinmal limit, we see that all
limits increase with an increase in eriergy and magnitude of the synchronous
phase. Because separate equations apply for the longitudinal and the trans-
verse current limits, with different dependences upon the parameters, it is
necessary to carefully specify the parameter regicn before making any other
statements about current limit dependence on the parameters in a iinear accel-
erator. When the longitudinal limit gives a smaller result than the transverse
limit, we expect the longitudinal motion will determine the overall current
limit, so that the dependence of the latter upon the parameters will be that
of the longitudinal current-limit formula. Likewise, when the transverse
motion sets the limit, the transverse current-limit formulas represent the
overall current limit. An important intermediate case is when the transverse
and longitudinal current limits are constrained to be equal. If this equality
is maintained by always adjusting E to compensate for the effect of varying
other parameters, then E, depends upon these other parameters in a com-
plicated way. The (case 2) longitudinal current limit is linearly proportional
to Eo’ but the transverse current limit is insensitive to Eo when the rf
defocus parameter is not too large. Therefore, for this case, the transverse
current-l1imit formula itself gives approximately the correct explicit depend-
ence of the overall current limit with respect to the changing parameters.

For an example we applied these current-limit formulas to an RFQ that
bunches and accelerates a deuteron beam from 0.1 to 2.0 MeV with a final syn-
chronous phase of bg = -30° at an 80-MHz frequency. The design approach
details are given in Ref. 3. The acceleration-efficiency parameter was kept
fixed at A = 0.55 at the end of the bunching section, where both current limits
occurred according to the formulas in this report. The electric field was
held at a fixed value so that this example corresponds to our case 2. The
curves in Fig. 1 show the calculated transverse and longitudinal current limits
at the end of the bunching section as a function of eg. The rapid cut-
off of the It curve at low egz values is due to the rf defocus effect.

The decrease of Il at large g values results from the decreased

aperture that corresponds to large eg. The optimum operating point at

15
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Fig. 1.
Limiting beam currents vs 02 for an RFQ. The curves are ob-
tained from the formulas 40 and 46 given in the text. The sol-
id points are obtained from the computer program PARMTEQ.
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eg = 5.6 gives equal transverse and longitudinal limits. The data

points shown in Fig. 1 are obtained from a numerical simulation using the pro-
gram PARMTEQ.3 The 1limiting current obtained from the PARMTEQ calculation

is taken to be the saturated value of the output beam current zs a function of
the input current. The agreement between the data points and the lower branch
of the curves is good despite the difference in the calculations. The space-
charge force in PARMTER is treated by giving each particle one impulse per
cell, which depends upon the coordinates of all other particles in the bunch.
Interaction between bunches is also taken into account. In these respects and
in others, the numerical calculation is done in more detail and with more
realistic assumntions than the simplified ones that produced the formulas.
Furthermore, many predictions of PARMTEQ have been compared with experimental
measurements from the RFQ recently tested at Los Alamos Scientific Laboratory
(LASL) and the agreement has been good,8 which lends support to th= PARMTEQ
calculations. The formulas are not intended as a substitute for the numerical
calculation, but show the dependence of the current limits on the variables in
a convenient form, provide an understanding of the basic effects, which deter-

mine the maximum beam current, and serve as a guide for high-current linear

accelerator design.
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APPENDIX A
THREE-DIMENSIONAL ELLIPSOID MODEL

The electric field components within an azimuthally symmetric ellipsoid

of radius r and longitudinal semiaxes b are given by

Ex
Zeoy

Lol @] 1)
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g = oyll-£(m] (A-2)

y 2
ZEOY
and
Ez - .&z.ef_(L) . (A_3)
0

where p i1s the charge density and f(p) is the ellipsoid form factor.
The ellipsoid form factor is given in a convenient form by

Gluckstern.2 It can be written
r~
1 -1
7" F—5 cos P, p <l
1-p (1 -1p)
Jp cosh_lp 1
£p) = NI T R »p>1 5
p- - 1) p- - (A-4)
1
5 s P = 1
where
-1 Z
cosh P= ln[p +Vp - 1] (A-5)
and
p=b/r (A-6)

The above function is plotted in Fig. A-1 as f(p) for p< 1 and f(1/p) for
p > 1. A useful approximate form is

f(p) = %— for 0.8 < p <5 . (A-7)
p
The charge density can be expressed as
p = ___QI—A—- )
4rrlbe (A-8)
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Fig. A-1.
E1lipsoid form factor f(p) vs P for p < 1 and f(1/p) for p > 1.
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where I is the average beam current if all the buckets are filled, A is the
rf wavelength, and c is the speed of light. Then the field components can be

written
3z
E = . 0 IA[1 ; fgp)]x , (A-9)
X m r by
3z
E =3 0 IA[1 ; fép)lx , (A-10)
y m r by
and
3z N
_ 7% 1xf(p)z (A-11)
E = o 3
z 4m 2
rb
where
1 -
Z0 =<< = 376.730 (A-12)
0
is the impedarce of free space.
APPENDIX B
MATHIEU EQUATION
We have written the Mathieu equation as
d2
£X [e sin 2mn + A]x =0 » (B-1)
2 0
dn
where
8. _
n=q (B-2)

Detailed information about the properties of the Mathieu

and L is the period.
The solutions are stable or unstable

equation can be found in Ref. 9,
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Fig. B-T1.
Stability plot for Mathieu equation showing lowest stable re-

gion. The contour lines are for parameters defined in the text.

21




depending upon the values of the parameters eg andA. For our
purposes the most useful stable region is shown in Fig. B-1. The phase
advance per focusing period is o. The guantity r+ is the ratio of the
maximum of the betatron function to the period, or

B+
I‘+ = i— . (8-3)

The modulation factor ¢ is defined as

B

-+, (B-4)
B

Approximate formulas can be written that are often very useful. The
lower stability limit in Fig. B-1 is given approximately by

4

g
L ia=0 . (B-5)
2
8w
An approximate form for the upper stability limit is
[902 + 2A]= ot . (B-6)
The smooth approximation solution, generally valid for ¢ < n/2, gives
4
2 B0
6" =—% +4 , (B-7)
8m
2 2
[2 + 0g2m7] -8
I‘+ = o —
and 9
N 1+ (GO/ZTI)—
1 - (8g/2n)° (B-9)
APPENDIX C
NOTATION
a radial aperture
b longitudinal semiaperture of ellipsoid
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[*]
o

™™ ™™ W

Fourier coefficient

speed of light

electron charge

ellipsoid form factor

accelerating gap

longitudinal wave number

transverse wave number

mth Fourier component

particle mass

aspect ratio of ellipsoid

charge state of ion

radius of ellipsoid (mean beam-envelope radius)
maximum envelope radius

minimum envelope radius

beam-envelope radius

coordinate along accelerator axis

transverse coordinate of particle
transverse coordinate of particle
acceleration efficiency

atomic mass number of ion

magnetic flux density

average axial electric field amplitude
average beam current assuming all buckets are filled
longitudinal current limit

transverse current limit

length of focusing period

ratio of focusing period to @&

transit-time factor

intervane voltage

slowly varying factor in smooth approximation solution
free-space impedance, 376.73 Q

trarmsverse acceptance

transverse acceptance at zero beam current
ratio of particle velocity to speed of light
maximum betatron function

minimum betatron function
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Bx betatron function

By mean betatron function

Y ratio of total particle energy to m0c2

r, ratio of maximum betatron function to focusing period
) phase of betatron motion

A total defocusing parameter

Apg rf defocusing parameter

8¢ space-charge defocusing parameter

€ emittance, ratio of beam phase-space area ton
€g permitivity of free space

n ratio of axial coordinate to focusing period
60 quadrupole focusing parameter

A rf wavelength

A guadrupole filling factor

H longitudinal space-charge parameter

Uy transverse space-charge parameter

P charge density

o transverse phase advance per focusing period
% transverse phase advance per focusing period at zero current
o, longitudinal phase advance per focusing period
¢ particle phase

¢s synchronous phase

X focusing efficiency factor

Y betatron function moduiation ratio

2 symbol for ohms

REFERENCES

1. A. Maschke, "Space-Charge Limits for Linear Accelerators," Brookhaven
National Laboratory report BNL 51022, (May 1, 1979).

2. R. L. Gluckstern, "Space-Charge Effects," in Linear Accelerators,
P. M. Lapostolle and A. L. Septier, Eds. (North Holland Publishing Co.,
Amsterdam, 1970).

3. K. R. Crandall, R. H. Stokes, and T. P. Wangler, "RF Quadrupole Beam

24

Dynamics Design Studies,” Proc. of the 1979 Linear Accelerator
Conferenca, Montauk, New York, September 9-14, 1979,



I. M. Kapchinskii and V. A. Teplyakov, "Linear Ion Accelerator with Spat-
ially Homogeneous Strong Focusing," Prib. Tekh. Eksp. No. 2, 19 (1970).

H. Bruck, "Circular Particle Accelerators," English translation in Los
Alamos Scientific Laboratory report LA-TR-72-10 Chapter IX.

R. A. Jameson and R. S. Mills, "On Emittance Growth in Linear
Accelerators," Proc. of the 1979 Linear Accelerator Conference, Montauk,

New York, September 9-14, 1979.

M. Reiser, "Periodic Focusing of Intense Beams," Part. Accel. 8, 167-182
(1978).

R. W. Hamm, K. R. Crandall, L. D. Hansborough, J. M. Potter, G. W. Rodenz,
R. H. Stokes, J. E. Stovall, D. A. Swenson, T. P. Wangler, C. W. Fuller,
M. D. Machalek, R. A. Jameson, E. A. Knapp, and S. W. Williams, "The rf
Quadrupole Linac: A New Low-Energy Accelerator," submitted to Int. Conf.
on Low-Energy Ion Beams 2, University of Bath, Bath, England, April

14-17, 1980.

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions,"
National Bureau of Standards, Applied Mathematics Series AMS 55, 1964,

p. 721.

#wU.S. GOVERNMENT PRINTING OFFICE: 1980—777-022/215

25



