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SPACE CHARGE DOMINATED BEAM TRANSPORT

I Hofmann
GSI Darmstadt, D-64220 Darmstadt 11

Abstract

We consider beam transport systems where space charge forces are
comparable in strength with the external focusing force. Space
charge then plays an important role for beam transmission and
emittance growth. We use the envelope model for matching and
the generalized field energy equations to study emittance growth.
Analytic results are compared with numerical simulation.

1 INTRODUCTION

In high-current linear accelerators and in transport systems for protons or heavier
ions the repulsive force due to the space charge carried by the beam itself plays an impor-
tant role for the design of the focusing system and for conservation of beam emittance.
In proton or heavy ion linear accelerators the actual space charge bottle-neck is at injec-
tion, where the ion is slow and correspondingly the space charge density and resulting
forces large. Much can be learnt from transport experiments [1, 2, 3], which have been
performed to study emittance growth under stationary conditions, i.e. no acceleration.
Interest in these transport experiments was largely stimulated by the idea of using heavy
ions for inertial confinement fusion [4], which requires transport of large currents over long
distances. We emphasize, however, that the role of space charge for emittance growth is
equally important for high-current proton or heavy ion linacs. One way of discussing emit-
tance growth is by relating it to the electrostatic energy of the space charge distribution
(“nonlinear field energy”). This concept was originally derived in Refs. [3, 6],

for 2-D beams. The analytical theory can be generalized to the 3-D case [7], but
we confine this lecture to the 2-D problem of beam transport of long beams, ignoring the
longitudinal degree of freedom.

2 BASIC PROPERTIES
2.1 Incoherent Effect of Space Charge

For comparison we recall that in circular accelerators space charge is always a rela-
tively weak perturbation described by the betatron tune shift Av

d*z
de?
where vg is the betatron tune in the absence of space charge and Av < 1 << 1 in order
to use a gap free of machine resonances. The corresponding slight increase in betatron
wavelength is contrasted by a large effect in high-current linear accelerators, where one

tries to compensate the external focusing force (given by #¢) as much as possible by space
charge, hence v? < 12 (Fig. 1).

= —(v—-Av)Yz= -z (1)
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Figure 1: Space charge effect on betatron oscillation in circular accelerators (left) and
high-current linear accelerators (right).

2.2 Coherent Effects

In practice the ideal space charge limit ¥ = 0 with an exact balance between the
applied focusing and the defocusing force due to space charge can be approached only to
a limited extent. With decreasing v /vy the beam is increasingly dominated by collective
behaviour, which can lead to emittance growth. Coherent modes of oscillation have been
studied analytically for the highly specialized Kapchinskij-Vladimirskij distribution [8].
For more realistic beam models one depends on computer simulation, which shows various
modes of emittance growth due to such coherent oscillations (reviewed in Ref. [9]). It
will be shown below that in a periodic focusing system coherent modes of oscillation can
be in resonance with the focusing period. “Harmful” structure resonances can be largely
avoided by choosing sufficiently small values for o,.

2.3 Space Charge Limited Current

Following Maschke [10] the relationship between beam current and o /oo for a peri-
odic quadrupole channel can be expressed in the following way [11]:

I=3.66-10% §>1/3B§/3(ﬂv)”%”sF(a/oo) (2)

with By the quadrupole pole-tip field, ¢ the transverse emittance and F(o/op) a factor,
which depends only weakly on the type of focusing (see Fig. 2 for a symmetric quadrupole
channel). Equation (2) is the condition that the beam is matched to the transport channel.
For small o/0¢ the dependence of beam current on o for a given channel can be seen more
directly from the approximately valid scaling [12]

I ~d*~ £ (3)

g

where a is the channel radius. Knowledge of the minimum o for stable transport is thus

essential for optimum current transmission. This will be studied in more detail further
below.

3 MATCHING WITH UNIFORM SPACE CHARGE

The defocusing effect of space charge has to be compensated by an appropriate
change of the a- and $-functions at the entrance to a transport channel. For large space
charge it is often necessary to increase the quadrupole strength to avoid hitting the aper-
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Figure 2: Current transmission factor as function of o/0y.

ture. For uniform space charge distribution within an elliptic boundary the repulsive
Coulomb force varies linearly with distance from the beam center:

1 z
E. = 4
meovo  ala + b) )
and
1
E, = 4 (5)

7eovo b(a + b)

with vg = Bc and a, b the transverse semi-axi (i.e. envelopes). As is shown in the appendix,

following the derivation by Sacherer, [13] one can then describe the beam envelopes by
the equations

d? g2 ql

— = _ = 6

ds?" * kals)a a®  wegmyPvi(a+ b) 0 (6)
and similarly

d? g? ql

—b+ k(s)b— =% — =0, 7

ds? T k() b weomyivi(a + b) 0

with €., e, the emittances and I the current. These equations are the basis for matching
of a beam to a transport channel in the presence of space charge.

As an example we consider a symmetric FODO transport channel with the periodic
cell 4 m long and a beam of protons at 100 MeV with ¢ = 107%rm-rad. A matched
envelope for vanishing space charge (I = 0) is shown in Fig. 3 (top), where the upper
trace is the horizontal, and the lower trace the vertical envelope. The trajectory of the
test particle shown gives a full oscillation over six periodic cells, i.e. oo = 60°. We also
show the increased envelope and reduced betatron phase advance o for large currents, but
focusing gradients unchanged. Results are summarized in Fig. 4, along with the increase
of B-function values (here at the center of a drift section) for decreasing o.

For an aperture limited beam transport it is necessary to increase the focusing
gradients. In Fig. 5 we have used the same currents as in Fig. 3, but increased the
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Figure 3: Space charge effect on matched envelopes in symmetric FODO channel with
0g = 600

quadrupole gradients (shown by the height of square boxes) so that o = 60° is maintained
for the depressed tune. As a consequence the average envelope has about the same size

as in the zero-current case of Fig. 3, whereas the excursions of the envelope increase with
current.

4 EMITTANCE AND FIELD ENERGY
4.1 General Principle

We are interested to understand under what conditions and to what extent the
emittance can grow. Our goal is to predict emittance growth from general principles - as
much as possible - without actually computing the dynamical process responsible for it.
Here we present an approach, which allows a qualitative discussion of the various sources
of emittance growth, as well as quantitative estimates for the expected growth in special
cases. The general idea of this approach is to consider emittance growth as an increase
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Figure 4: Phase advance o as function of I and S-function as function of ¢ for fixed

0g = 600

of thermal energy, which must be taken from the overall available beam energy. If we
succeed in estimating the available source of energy we can also estimate the maximum
possible emittance growth.

We assume the total energy of the beam can be written in the following way

Etotal = Eo + Btz + Ethz + Eext + Efieta (8)
where
z,z = transverse coordinates
Eq = forward kinetic energy
Eihz. = thermal energy in z,z (equivalent to emittance)
E... = potential energy due to externally applied focusing force
Efielq = energy of space charge induced electric field

A growth of thermal energy (in z or z) and thus emittance is possible at the expense
of either Ey or Ef;y. Due to the fact that the beam is always at a minimum of the
external potential (in time average), E.,; is not a source of energy available for emittance
growth and we expect F.,; also to increase during growth of the emittance. In addition,
it is possible that thermal energy is transferred between the transverse plane (z,z) and
the longitudinal direction (y), if there is a significant initial imbalance. This important
subject {“equipartitioning”) is treated in Ref. [14], with an analytical model in Ref. [15].
In all cases Ey;. 4 plays a crucial role. It should be noted here that in a constant focusing
system Ey, + Eeyt + Efielq is constant, hence we have no coupling with Eo. In periodic
focusing, on the other hand, such a coupling can be significant as will be shown below.
This subject has been treated in detail in Ref. [8].
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Figure 5: Increased focusing gradients keeping constant ¢ = 60°, which results in roughly
constant average envelope.

4.2 Generalized Emittance Equation

It can be shown that the emittances ¢,,¢, for the two transverse planes z,z are

related to the field energy by the following equation, valid for constant or periodic focusing
(the derivation is given in Appendix A; see also Refs. [5, 6, 7]:

1 d 1 d d W-W,
= — &2+ = — = —4K— ——= (9)
x? ds 22 ds ds wo
with
N 2 ‘
K = —% (generalized perveance)
2reqgmy3ud

z?, 2% mean squares of z, z
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W actual field energy

W, field energy of equivalent uniform density beam

wo normalization constant (= field energy inside actual beam boundary
of a uniform beam)

The significance of this equation is that the change of emittance is related to a
change of the “nonlinear field energy” W — W,, i.e. the excess field energy due to the
non-uniformity of the density. A uniform density beam — even with large mismatch —
therefore has constant emittance.

4.3 Minimum Field Energy of Uniform Density Beam

A practically important property of the field energy is that it adopts its minimum
for a uniform density beam. This can be shown by defining a variational expression

S =W + arz% + ay2? (10)

with a;, @, Lagrangian multipliers to keep the r.m.s. size constant. For a minimum we
require the variation of S to vanish, hence

53 = // [c0BSE + N7* (an2® + az2*) én| dz d-. (11)

The density perturbation is defined by an arbitrary displacement

én(z,z) = Vn - éx, (12)

thus we obtain
6S = // [qﬁ + N1 <a1x2 + 0222)] (Vnéx)dzdz =0 (13)
requiring either ¢ = —N~!(a;22 + a,z?) (interior of beam, hence uniformly charged

ellipsoid) or n = const. = 0 (exterior).

4.4 Field Energy of Different Beam Models
Calculation of the field energy for a parabolic density profile

2N x? 2P
=2 (1-_-Z 14
"7 Tab (1 a? 67) (14)
leads to the following result
N2g? /11 2R
W = = 4 4 ) 15
167r50<6 In V6 +4 o 2 (15)

with the r.m.s. envelope z = a/\/é and z = b/\/g Due to the minimum field energy
property of a uniform beam of the same r.m.s. size it is convenient to calculate the
difference energy in normalized units:

W-W. _ %- 4 1n§ ~ 0.0224. (16)

Wy
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This normalized “nonlinear field energy” hence is always positive according to the previous
section. For a Gaussian density profile truncated at 4 standard deviations one obtains
the considerably larger value of 0.154.

4.5 Stationary Distributions and Debye Shielding

It must be noted that a Gaussian phase space distribution is consistent with a
Gaussian density profile only in the low-current limit. From computer simulation one
finds that practically any phase distribution functions leads to uniform density in the
limit of high current. In Fig. 6 this is shown for a Gaussian distribution.
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Figure 6: Density profiles for Gaussian phase space distribution near space charge limit.
Bars indicate Ap according to Eq. (20).

This is readily shown for a Gaussian distribution (r? = 22 + 2?)

12 Zl2 A
e (2 ks 1)) "

my3vd

which, after insertion into Poisson’s equation and expansion of the exponential yields

a

n o~ ng [1 - (;—)1/2 exp ((r — a)/)\D)] (18)

provided that the total potential in Eq. (17) is small as compared with the average

transverse energy p. This condition can be expressed in terms of the Debye-length Ap,
le.

A
= <<l (19)
where Ap is given by
2 __ K FN Uik
Vp=—x2mef (20)
P 3 P
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We can also express Ap/a in terms of the tune depression

/\D 1 v

o VB

where v /v is replaced by o/oq for periodic focusing.

(21)

The physical meaning of the Debye-length is the one familiar in plasma physics: a
high-current beam shields the external focusing force from its interior by building up a
uniform density with a space charge force that cancels the focusing force. The shielding
is ineffective in the boundary layer of a thickness given by Ap (Fig. 6). Hence, for small
v /v, there is practically no restoring force in the interior of the beam and particles are
“reflected” by the uncompensated force in the boundary layer.

5 APPLICATION TO EMITTANCE GROWTH

Using Eq. (9) we can now discuss the possible sources for emittance growth. The
relationship between emittance and thermal rsp. kinetic energy suggests the analogy with
a ball in a potential trough. The following situations can be envisaged:

o/ e/

stable stationary stable mismatched unstable

Pa'st

Figure 7: Analogy with ball in a potential trough

5.1 Stable Stationary Beam

This requires that the emittances ¢, and ¢, are conserved along the channel and the
envelopes in z and z vary periodically. According to Eq. (9) a necessary condition for this
is that W — W, is a constant. This can be satisfied if the beam density profile remains
self-similar. Such an observation has been made in numerical simulation; an analytical
proof for beams with non-uniform density and periodic focusing is given in Ref. [16].

5.2 Mismatched Beam

An initial excess field energy is transferred into emittance according to Eq. (9). For
a round beam and constant focusing we can integrate Eq. (9) and find

2 2
ac _ 1 (ﬁ _ ) AU (22)

g? 2\ 2

with U = (W — W,,) /wo the normalized nonlinear field energy.

As an example we inject a beam with Gaussian profile into a channel with vy/v =
6. Since we know from equation (14) that close to the space charge limit a stationary
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solution has nearly uniform density, nearly all of the excess nonlinear field energy (0.15
in normalized units) is found as emittance growth during less than a betatron oscillation.
Hence we can estimate the predicted emittance growth by ignoring the final nonlinear
field energy and thus obtain

2 <96 (23)

which is equivalent to an emittance growth of 90 % and agrees very well with the result of
simulation. This is shown in Fig. 8a for a multiparticle computer simulation in a periodic
solenoid channel. We observe that the mismatch emittance growth formula applies equally
well to periodic focusing also - growth factors found in simulation are practically identical
with those in constant focusing. It is only the ratio vy/v rsp. oo/c, which is important.

A different result is obtained if a strictly uniform beam is injected, hence we start
at the minimum field energy. Such a beam has the tendency of smoothing its sharp
boundary, which requires a small amount of field energy leading to a small decrease in
r.m.s. emittance. This is again confirmed by simulation (Fig. 8b). We observe that
such an r.m.s. emittance decrease is not violating Liouville, which still applies to the
four-dimensional phase space. We thus conclude that injection of as uniform a density as
possible minimizes emittance growth of high-current beams.

In this context we also need to mention the possibility of an initial envelope mis-
match, which might result from an improper entrance matching. The associated “mis-
match energy” can be translated into emittance growth if the beam density is nonuniform.
This case is considered in more detail in Ref. [17].

5.3 Coherent Instabilities

In linear beam transport, coherent instabilities occur due to a local interaction of
an ensemble of particles via the space charge force. This is in contrast with beams in
circular accelerators, where coupling to the surrounding structure or to other bunches
plays a dominant role.

In the present framework coherent instabilities can be discussed qualitatively by
writing Eq. (9) for a round beam in periodic solenoidal focusing (k, = k).

i52 = _9K xQ(S)di M

24
ds S Wo ( )

We assume a matched envelope, hence 2?2 oscillates with the focusing periodicity. Further-
more, we assume a small coherent oscillation of the beam, such that W — W, oscillates
with the period of oscillation of the particular mode. We now anticipate a steadily growing
e2, if 22 and W — W, oscillate with the same frequency (phase shifted by ~ 90°). In this
case the r.h.s. of Eq. (24) has a non-oscillatory part, which adds up to a finite emittance
growth unti] the resonance condition is lost by detuning. The resulting “structure reso-
nance” is thus a coupling between the zero-order oscillatory envelope and a non-uniform
coherent mode of oscillation as illustrated by the example in Fig. 9 of a round beam in
periodic focusing with oo = 120° and o = 10°.

A direct calculation of the emittance growth is not possible from Eq. (24); this would
require to determine the actual time dependence of W — W,,, which is not possible analyt-
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Figure 8: Squared envelope (top), nonlinear field energy U/w, (center) and emittance
growth factors (bottom) versus number of focusing periods obtained from multiparticle
computer simulation in a periodic solenoid channel with oo = 60°,0 = 10°. (a) Gaus-

sian density profile, (b) Semi-Gaussian: uniform density profile and Gaussian velocity
distribution.

ically. For illustration of the principle of a structure resonance we can, however, derive a
scaling expression for the emittance growth by making a simple harmonic approximation

z%(s) ~ &% + 6% sin(ws) (25)
U~ U+ 6U cos(ws) (26)
where w = 27 /L and L the focusing period. We then find from Eq. (24)
d , 2 .2
7:€ =~ 2Kéz*w 68U sin®(ws) (27)
s

In smooth approximation K follows from the envelope equation (with ¢; the matched
initial emittance)

2 /.2
_1 & [0g
We obtain
5 7 [ ol 22 s|"*
S+ (D) sps 29
e 1+2(02 )£26UL] : (29)

where we have used the approximation [ sin®(ws)ds ~ -2:
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Figure 9: Structure resonance in computer simulation of initially uniform beam (KV-
distribution) in periodically interrupted solenoid focusing.

From this expression we conclude that in an advanced stage the emittance rise is
weaker than linear in time. It is enhanced by small ¢ and large envelope excursions as
in strong focusing. In the example of Fig. 9 the excited mode has an octupole type field
perturbation, which grows from noise on the initially uniform beam (KV-distribution)
and saturates between focusing period 15 and 20. In this region the average normalized
nonlinear field energy 6U is estimated as 0.02 and Eq. (29) yields £/¢o ~ 3 which agrees
reasonably well with the numerical result. After focusing period 20 the situation becomes
very nonlinear: a different mode with half the oscillation frequency starts growing and
leads to further strong emittance growth.

These particular modes can be avoided if oy < 90°, in which case they are out of
resonance. As was shown in Ref. [8] another type of mode can appear for oo = 90°
and o ~ 45° (sextupole type field perturbation). This mode, however, was found to be

practically negligible in its effect on emittance growth. This result was also confirmed by
experiment [1].
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A APPENDIX
A.1 Derivation of R.M.S. Envelope Equation

In order to derive analytically a relationship between emittances and field energy
we consider z and z as transverse coordinates and start from the single-particle equation
of motion in z (similar for z)

" + k (s)z — —(!——E,:(:E,z7 s)=10 (A.1)

3.2
my~vg

where k. describes the periodically varying focusing force and E follows from Poisson’s
equation

V.-E=2 n(z,z25) (A.2)

€o

and n is the density obtained by projecting a 4-D phase space distribution into real space:

n= //f(x,z,x',z',s)dx’ dz (A.3)

The distribution function f is subject to Vlasov’s equation (vy = dz/ds).

af

EX
Solution of equations (A.1)-(A.4) is fraught with the usual difficulties in solving a partial
integro-differential equation. Keeping in mind that the r.m.s. emittance is defined through
second-order moments of the distribution function, we follow the procedure introduced by
Sacherer [13] and convert Eq. (A.4) into ordinary differential equations involving second-
order moments only. We thus define the moments, where we assume that IV is the total
number of particles per unit length of beam, according to

+(x’-V)f—(k—mq E)-V;f=0 (A4)

3,2
TV

2= NI/.../fo dz..d, (A.5)

similar with 22, zz’ and likewise in z. The r.m.s. emittance is then defined as (note that
some authors drop the factor 4)

. =4 (%7 - 7)) (A.6)

and similar in z. We then obtain from Eq. (A.4) by multiplying it with z* and integrating
over all phase space

d— —
—z% - 227" = (A.T)
ds
d— — g —
—zr’ — 2? + k2t - ——zE,; =0 (A.8)
ds m~y3v3
-—d——:z_:ﬁ +2kpza’ — —— £, =0 (A.9)
ds my3vd

By applying Sacherer’s procedure we readily obtain the equation
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2 2
ac‘l;f”rkz(sﬁ o) gzl

162 mAy3l & 0 (A.10)
(similar in z) with # = 7277 the r.m.s. envelope. This requires, however, knowledge of
€, to be of real use. Hence, for constant ., a straightforward integration of the r.m.s.
envelope equation is possible, if zE, can be calculated explicitly. This is indeed possible
for a uniform charge distribution within an elliptical boundary, in which case E; is a
linear function of z (see section 3).

Hence we obtain the r.m.s. envelope equation
d? g2 ql
—~—1I kx r — gi - po -
izt T (s)2 162%  4reom~y3vi(z + 2)
and similar in z. Note that Z = a/2 and z = b/2, where a, b are the usual envelopes.
We also derive from Eq. (A.10) the differential equation

=0 (A.11)

i e? — 32¢
ds *

and similar for z, where we had to introduce the moments zE,,z'E,. For E, a linear
function of z, one readily sees that ¢, must be constant, hence the r.m.s. envelope
equations are a closed set of ordinary differential equations and can be solved explicitly.
For E, other than a linear function of z (or a constant) these moments are of higher

order, hence the above differential equations are not a closed set. By going to higher
order moments we would obtain an infinite set of coupled equations, in general.

(27 7E; - 72 3E;) (A.12)

- 3,,2
my>vg

A.2 Generalized Emittance Equation

In the following we show that it is possible to transform the terms involving the
electric field in such a way that only the energy of the field appears explicitly. The latter
still includes higher-order moments, but we benefit from the fact that it is a quantity of
direct physical meaning and amenable to estimates.

For this purpose we re-write

7E, = N / /mEf dz..d7 = N‘l//Ernvr dz dz (A.13)

where we have introduced v, as local averaged velocity of beam particles (in a frame,
where the beam is at rest).

With the local current

J = qnuev (A.14)

we obtain

7E, = (quo)_l//Erjxdm dz (A.15)

and similar for 2. We thus find, using E = —Vg):
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//E-jdxdz://gbv-jdxdz:—qvo//qbi—dedz (A.16)

where we have used the continuity equation

—+(quo) ' V-j=0 (A.17)
bs

derived from Eq. (A.4) by integration. The integration in Eq. (A.16) is performed over
the cross section F, which contains the beam in its interior, hence we may neglect a
boundary integral. Using Poisson’s equation we obtain by partial integration:

d 8
drde = o LW — 9E A18
//E j de ds = =W 50v0/¢8sEda (A.18)

with E, the normal component of E on the boundary of F (surface element do) and

W = 6—20//E2d:c dz (A.19)
the electric field energy within F.

The next step is to add the three Egs. (A.12) and express 2’E, by the electric field
energy according to Eqs. (A.15, A.18). We thus find the relationship

1d, 1d, 32 1 dW 50/,6
—_—— —_——c? = —_ = —FE,do -1 A.20
x? ds ° + 2?2 ds ? my3vd [ Ngq ds Ngq %5 d ( )
with
1(1dz?°— 1dz? —
= — —_— —_—— . A-21
I 5 ($2 s oK, + = s zEz> ( )

Equation (A.20) holds exactly, but we need some approximation to evaluate the term /
on the r.h.s. and obtain a practically useful equation.

Firstly, it can be shown that for a uniform beam with elliptic cross section the field
energy per unit length calculated within a large circle of radius R is given by

2,2

N4q 2R )
= { A.22
We 167eg <1+4 na+b ( )

where @ and b are the semi-axi in z and z. We then also find for the uniform beam that
I is related to W, according to

1dy
Nqgds

Next we use the result found by Sacherer that zE, and zE, are independent of the density
profile as long as elliptical symmetry is given:

I= (A.23)

2 2
oz =n (5 =) (A20)
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Hence, Eq. (A.23) is true for all beams satisfying equation (A.24) and we re-write Eq.
(A.20) as

1d, 1d, d W -W,
=— =—c= 4K———. A25
2ds " 72 ds'* ( )

Here we have neglected the boundary integral (which is justified for large R) and intro-
duced the generalized perveance

ds  wy

2
K=_ V4

T 2megmAydvd

(A.26)

and the field energy normalization constant wy = (N?¢?)/(167eo), which gives the field
energy of a uniform beam within the actual beam boundary. We note that the generalized

emittance Eq. (A.25) derived here for 2-D beams can be derived for 3-D bunched beams
as well [7].
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