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ABSTRACT

This advanced course on general accelerator physics is the second of the biennial series given
by the CERN Accelerator School and follows on from the first basic course given at Gif-sur-Yvette,
Paris, in 1984 (CERN Yellow Report 85-19). Stress is placed on the mathematical tools of Hamiltonian
mechanics and the Vlasov and Fokker-Planck equations, which are widely used in accelerator theory.
The main topics treated in this present work include: nonlinear resonances, chromaticity, motion in
longitudinal phase space, growth and control of longitudinal and transverse beam emittance, space-
charge effects and polarization. The seminar programme treats some specific accelerator techniques,
devices, projects and future possibilities.
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FOREWORD

The CERN Accelerator School was established in 1983 with the main mission to preserve and dis-
seminate the knowledge accumulated at CERN and elsewhere on particle accelerators and storage rings
of all kinds. This is being achieved by means of a biennial programme of basic and advanced courses
on general accelerator physics, supplemented by topical courses organised jointly with the US
Particle Accelerator School, and specialised courses as needs arise. The basic and advanced courses
together bridge the gap between a science or engineering degree and the level of knowledge appropri-
ate for starting accelerator research work.

In 1984 the first basic course on general accelerator physics was held at Gif-sur-Yvette, Paris
and the proceedings subsequently appeared as CERN Yellow Report 85-19, Volumes I and II. In
September of the following year the first complementary advanced course was held at Oxford and the
present proceedings bring together the lectures and seminars presented there. In alternate future
years these courses will be repeated with some modifications for new material and current develop-
ments. Since this is an advanced course primarily meant for those interested in going deeply into
accelerator theory, a certain stress is placed on the mathematical tools of Hamiltonian mechanics,
the Vlasov equation and the Fokker-Planck equation, which are widely applied in the lectures.

With the publication of these proceedings I should 1ike to take the opportunity to thank, on
behalf of the School, the CERN Directorate and the School's Advisory and Programme Committees for
their continued support and effort. The support of the Department of Nuclear Physics, Oxford, in
organising the course, and the help and sponsorship of the Rutherford Appleton Laboratory are grate-
fully acknowledged. Particular thanks are also due to the lecturers who not only prepared and pre-
sented the different topics but also completed the exacting task of writing their chapters for the
proceedings. I am also very grateful to the many people in the various CERN services who have given
invaluable help in producing these proceedings. Finally, and most important, I would like to thank
the 114 participants in the course who made it all so worthwhile.

This course was both the first of the advanced general accelerator physics courses to be run by
the CERN Accelerator School and the last to be directed by our founder Head, Professor Kjell
Johnsen. Since CAS was formed in 1983, Professor Johnsen has guided us through four courses and one
workshop, and has set the school onto a firm foundation with clear objectives. He now hands over to
Dr. P. Bryant and in the brief eight months before he retires he will take on a new role as Chairman
of an Advisory Panel on new ideas for electron-positron Colliders for CERN as part of Carlo Rubbia's
Working Group on the Scientific and Technological Longterm Future of CERN.
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On behalf of all who have participated in the CAS activities, I should 1ike to extend our thanks
to Professor Johnsen and to convey our best wishes to him for his new work and his retirement.

S. Turner
Head of Administration
CERN Accelerator School



OPENING ADDRESS

Jd. Mulvey
University of Oxford, Department of Nuclear Physics, Oxford, England

First of all of course, a very warm welcome to Oxford. Actually it seems a little chillier
today but those of you who were here yesterday saw that the sun was shining and there is every expec-
tation that it will shine at least once again before you go. I welcome you to Oxford, to this
ancient University. The Queen's College, where you are staying, was founded in the year 1341, not
one of the first colleges, Merton usually claims to be the first foundation about a hundred years
earlier. Perhaps some of you who have had the opportunity of spending a first night in the college
will appreciate the feelings of an American lady who came here with her husband, an eminent geneti-
cist, spending a year here as a visiting professor, and after she left she wrote a book about her ex-
periences, with the title "These ruins are inhabited". However things have moved on. It is general-
1y assumed that the natural period or relaxation time for this University is about 250 years, but it
was not so very long ago that one visitor to the university being shown around, was suddenly struck
with a question which he put to his guide. "Tell me" he said , "the students who live in these
colleges, where do they wash?" The guide had to think for a few moments and then showed the visitor
the pump standing in the quadrangle. When the visitor expressed some surprise that that was the only
such facility the guide was again at a bit of a loss until he realised that there really was not any
problem, as he said, "Sir, the young gentlemen only spend 8 weeks here at a time". After these
calumnies, which I am sure you realise are repeated in front of every conference that visits Oxford,
I should provide you with some further information which may be of assistance.

The first thing that lecturers should notice is that if they put their lecture notes on this
side of the table the fan here will blow them off! You will have registered in the school office so
you know where it is. Well, regrettably, the school office will move. As from this afternoon it
will be at another location in the college which I think is best described to you by saying that we
will put a map on the door of the present office to tell you how to get to the new one. However, one
advantage of the new one is that it has a telephone in it, and if at any time you want somebody to
telephone you to leave a message this is the telephone number. If you want any information about the
college, where to find the gents toilets or the ladies toilets or to find a piano or anything that
you can think of 1like that, please in the first instance ask the porter at the lodge. If he cannot
satisfy you, then come to the office and we will try to solve it. In the wallet that you all have
received, you will find a certain amount of information about restaurants and entertainments in the
town, as well as the school programme. You will note that for the weekend, Saturday and Sunday we
have departed from what I think is normal tradition in not arranging an excursion. Our excuse for
this is the following. There are very many excursions that can be made, you can tour around the
Cotswolds, you can visit ancient castles, you can punt on the river here - if the weather is fine
enough - or you may wish to visit London. With all these possibilities we thought you should choose
your own pleasures. We will, of course, be glad to give you help and advice in making arrangements.

Finally, may I again welcome you to Oxford and wish you all a very enjoyable, and instructive
stay.



LOCAL COORDINATES FOR THE BEAM AND FREQUENTLY USED SYMBOLS

y is used as general transverse
coordinate for both x and z

Local centre
of gyration

Central orbit

s ( Tangential to beam direction )

(MKS units)
gy(s) transverse betatron amplitude function [m] in plane (y,s)
ay(s) - _ 1 dsy
2 ds
_ s ds . .
¢y(s) = £ phase of betatron oscillation
By(s)
Q number of betatron oscillations per revolution in
y transverse plane (y,s)
n(s) = y(s) normalised amplitude of betatron oscillation
B, (s
* d
¢(s) = £ S normalised betatron phase
Qg (s)
yy
p particle momentum [GeV/c ]
D(s) = ¥(s) transverse dispersion or momentum compaction [m](local y
AP/P transverse co-ordinate of an off-axis closed orbit
normalised by the fractional momentum deviation)
€ transverse emittance [n m.rad] (defn. using 2 standard
y deviations half beam width, € = 4o§/By).
p local radius of bending [m]
R average machine radius [m]
t time [s]
I beam current [A]
e electronic charge [A.s]
c velocity of the light [m.s=!]
B ratio of particle velocity to that of light
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Y ratio of total energy of particle to its rest energy
B magnetic induction [T]
E electric field strength [V/m]
Bp magnetic rigidity [T.m]
n= 1 - L revolution frequency spread per unit of momentum spread,
v> y? yt being the value of y at the transition energy
¢ 0g radio frequency phase seen by particle crossing a cavity
and phase seen by synchronous particle
Qg synchrotron oscillation angular frequency [s'l]
Ter Tp classical radii of the electron and proton respect. [m]
' denotes d/ds * denotes d/dt
average value A maximum value

minimum value <> average over distribution || modulus



J.S. Bell
CERN, Geneva, Switzerland.

ABSTRACT
For the bright gift of poetry was his;
And in lone walks and sweetly pensive musings
He would create new worlds and people them
With fond hearts and sweet sounds and sights of Beauty.
He had been gifted, too, with sterner powers.
Even while a child he laid his daring hand
On Science' golden key; and ere the tastes
Or sports of boyhood yet had passed away
0ft would he hold communion with the mind
Of Newton, and with awed enthusiasm learn
The eternal Laws which bind the Universe
And which the Stars obey.
W.R. Hamilton (c. 1830)

1. INTRODUCTION

William Rowan Hamilton (1805-1865) was a mathematician as well as a poet. His first
publications were concerned with geometrical optics. An analogy between geometrical optics
and mechanics led to his distinctive formulation of classical mechanics. For Hamilton the
relation between optics and mechanics was one of analogy only. But in the meantime the
analogy has acquired physical substance with the appearance, around 1925, of 'quantum
mechanics'. It is now thought that the motion of particles is guided, somehow, by associated
waves. And that it is only when the evolution of these waves is well approximated by
geometrical optics, i.e. when wavelengths are small and frequencies high, that classical

mechanics is good.

Consider the evolution of a 'wave packet', i.e. a wave train confined to a small region
of space, but nevertheless containing many (necessarily very short) wavelengths. If the
wavelength is (2w/k), and the corresponding time period (2w/w), the mean position q of the
wave packet moves with the group velocity dw/dk. This is very familiar in the case of a
homogeneous medium constant in time, when w is a function of k only. But in the case of g
and k large, it remains true (for short wave trains) in the case of an inhomogeneous

inconstant medium, when w has to be regarded as depending on position g and time t as well

as on wave number k:

da,
t

= %{ L«g(qw\&.\t). (N
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When w depends on q and t, the mean wave number k is not constant during the propagation. In

analogy with (1), it can be shown that

dk _ _ i
Ih = BOI/(N(C[/,\Q,L). (2)

Defining
b=tk , (9, b t) = h\w(%uk,\‘), (3)

where 2vh is Planck's constant, we have finally

dq,
at

db _ _
a.—é- -aq/\—\ (CV'»\’)?‘C)w

(]

S—PH (a,b,¢) 1

(4)

i.e. Hamilton's equations for classical particle motion; p is called the momentum conjugate

to coordinate q, and H(qg, p, t) is called the Hamiltonian function.
For simplicity we consider explicitly above, and often below, the case of just one
coordinate q. For a particle moving in three dimensions we have actually three coordinates,

9, 9, and q, (and for N particles 3N g's), and corresponding momenta. Equations (4) hold

for each coordinate 9, and momentum P,:

Ao,
L 24, b, ),

At 2 (5)

dbe _
()Tt— = /O%“H(ol/, P, t).

The Hamiltonian for a particle of mass m and charge e moving in an electromagnetic

H = ed? + “f@‘e"&)l'\' met o, (6)

where w(&, t) and 3(3, t) are scalar and vector potentials, corresponding to electric and

field is

magnetic fields:

oy

E? = -—%?($ _2A Eg = vx A . (7

)
o



-7 =
One can arrive at (6) just by writing down the simplest Lorentz- and gauge-invariant wave

equation, which defines w(q, k, t), and using (3). One can also check that (6) yields the
familiar equations of motion. From (5)

S (pen) (fGGeAT o

d bu 3¢

Using

(A ;\w _ 2 /3\n + :ii, CA q/MA E)%\\A

—_ (10)

and (8), equation (9) becomes

d _ e _ e A
CA b ( tDM-_G?/\;>

29, ?to\% R A
m(0RAmM DAw
+ezwi'0\t(-5%« M,w)
= eE(9, ) + eé%x@(ﬁ',&), (1

From (8)
wi [[i=4T /e = PocA

(where q = dq/dt). Using this in (11),

JﬂL _,__!!Lji;—-—-——-) = € ig 4+ € ) X E;
o\t( m i

(12)

as required.

Those who would not be bothered with quantum mechanics can simply start from the
observation that with definition (6), equations (5) and (12) are equivalent.



2.  POISSON BRACKETS

The rate of change of any function F(q, p, t) along a dynamical orbit is
dF LA (s Ay  2F o\bn)
at o 20w At ohw At

12}
< (2F 2H _ 9F oH
+ %J (3% el ?‘PWBC\/V\\) (13)

1

t
2F
Tt
[using (5)]. For any two functions F and G we define their

Poisson Bracket:

F 3G 2F 26 — 4
e ) = (F, ¢,

12)

Then (13) becomes

aF 2
T + (F,) H} (15)

When F and G are identical the Poisson bracket (14) vanishes. In particular, (H, H) = 0. So
taking F in (15) to be H,

tﬁté = ?—5—\:& . (16)

In particular, if H does not depend directly on t, (dH/dt = 0), it is unchanged by the

variation of q and p along a dynamical orbit:

dH / dt = o, (17)

The value of H is called the energy, and (17) expresses conservation of energy.

3. STATIONARY AND VARYING ACTION

Consider a finite path in (q, p, t) space -- not necessarily a dynamical orbit (a
solution of Hamilton's equations). We define the corresponding action S to be the integral

along the path,
S ((patw) = g(zv\: Pu d ., —\—\o\t\ , (18)

[Warning: sometimes the name 'action' is used for a quantity which omits the dt

contribution in (18).] We will consider how S changes when the path is changed slightly.
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It is convenient to label the points along the path by a parameter A, which can be
supposed to begin at O and end at 1. Then (q, p, t) are functions of A, and considering
different paths means considering different functions of A. The expression (18) can be
written

\
S; = S a \ ( k; éﬁk - H Q&E. ) (19)
o aA A 3
where for simplicity we omit the summation over n.

Wwhen the path is varied slightly, the increment in S is

8¢S = go\)\ (gb"%\_ S\_\O\_k + b AM_,\_*O‘&\)

AN aN AN
S PATCLP | A d
= ax[% Moyt dv o, ad _( s
S \J‘M TR LSy bsq -Hse|| (20)
Remember that H is a function of (q, p, t):
L= i oH
SH = ?%81 + St +®P%b )
Using this,
dq  oH dt _Cx_\z-""“dt)
%G = gd}\ {%P(_}\" St "}\\)"'% ( AN 29, 0A

n

gdt{%\a(@-’é_ﬂ\ N %%(Q%_%\%}v

- A= 1
+ %t (‘.)‘-\i_.?_"‘) + \“P%%‘ng } (21)

£ ot A= o

The coefficients of &p, dq, 6t, are just the expressions required by Hamilton's equations,
(4) and (16), to vanish. And so we have

Hamilton's principle of varving action: if, and only if,

/\
2S = [\D%CI"H%t]O (22)

for any small variation from a given path, is that path a dynamical orbit (i.e. a solution
of Hamilton's equations).
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If we consider only variations with 6p = &q = 6t = O at the ends, we have from Eq.
(21):

Hamilton's principle of stationary action: if, and only if,

S = o© (23)

for any small variation of path in which q, p, and t are held fixed at the end-points, is

the given path a dynamical orbit.

Requiring (23) for fixed end-points requires Hamilton's equations everywhere in
between, because 5q, &p, and 5t can be arbitrarily varied arbitrarily close to the end-
points. It is striking that the restricted requirement, (23), for fixed end-points, by

requiring Hamilton's equations requires (22) for unfixed end-points.

4. POINCARE INVARIANT

Consider a family of dynamical orbits

q/()\’\k‘/u’) ° "w

- . - (24)
P (A, w1, )

E(N, w, v, ) .
For fixed u, v, ..., as the parameter A varies from 0 to 1 these functions trace out a
solution of Hamilton's equations. The parameters u, v, ... serve to distinguish different

members of the family of solutions coﬁsidered. For each member we have the action (18):

S(U, v, - o ~): S(PA%\ Holt) . (25)

The variation formula (22) is valid for variation from a dynamical orbit to any nearby path,

and so in particular for variation to a nearby dynamical orbit
S = (bS%— HSt\)\:1" (b%%— H%\:)/\=o . (26
Integrating this, we have for variation from an orbit u, v, ... to another u', v',
S(uyv o) = S(u,vy )
= S‘ (pag-H At — g (\n)\q—H o\\:) .@n
o

The two integrals are over the paths traced out, at A = 1 and A = O respectively, by varying
U, V, ... in (24). If we return finally to the original orbit, i.e. if u' =u, v' =v, ...,

the left-hand side of (27) vanishes, and we have

§(b0"‘1/'\"0\¥) = <§ (bclq/-—Hdk) ’ (28)
1 0
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The notation § indicates that we now have integrals over paths which return to where they

start, i.e. closed paths. We find then, making explicit the sum over degrees of freedom,

that
g (2‘. budq, - H o\t) (29)

is the same for any two closed paths obtained one from another by motion along dynamical
orbits. This is the Poincaré invariant (or ‘integral invariant', or 'relative integral
invariant').

5. LAGRANGE INVARIANT

Consider again the family of orbits (24). From (25) and (26)

L %,H'z_ty
oW 2W ou J, )
whence
2 ?;L A
VI w U [APA AL ° °
Equally A
T
S 'ﬁ»3_3+bb@ o (32)
SW U QU W uoU o
Subtracting (32) from (31),
t\
o 29, P 9P 29 b IW  QH Bt -
T loawdv 2wovu wovUv T 3udv .
o
So we have that the Lagrange bracket
_ZJ 2% Obu by B.l’" l\:’bH _°H ot (34)
[u,v‘ A T A A 2U AV DUV

is constant along dynamical orbits when u and v are constant along dynamical orbits.

Consider a small variation from one dynamical orbit to another,

o9, R
6‘%‘—‘5\1%“ 2 %“D: ?uS\A y © T (35)
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and a second such variation

9
5,9 = %SV,%&:?\%%v (36)

It follows from the constancy of (34) that

Z (Slc‘/w %1\7“*%.\9“&%\ - (S.t%,_H~%‘H Slt) (37)

for variations from one dynamical orbit to any two nearby dynamical orbits, is constant.

This is the Lagrange invariant.

There is a close relation between Lagrange and Poincaré invariants in the case of one
degree of freedom when time t is held constant in relating one orbit to another. From (29)

g \3"‘)‘1 (38)

is then constant as the points (p, q) of the integration path move in time t in accordance

with Hamilton's equations. The integral (38) is just the area of the (p, q) plane contained

the integral

by the curve (Fig. 1). So this area is a constant of the motion (a special case also of

Liouville's theorem, Section 7).

Cconsider in particular a small parallelogram in (q, p) space with for sides (61q, 61p) and

(qu, 62P) (Fig. 2). This has an area

%9 S.p - S.PS.q - (39)

It evolves in the course of the motion, to the approximation linear in small quantities,
into another small parallelogram -- which must have the same area. From the Poincaré
invariance of (38) we arrive therefore at the Lagrange invariance of (39), a special case of
(37).

Conversely, a large area can be seen as made up of little parallelograms (Fig. 3). The
Lagrange invariance of the small component areas then implies the Liouville invariance of

the total area, and the Poincaré invariance of the corresponding line integral (38).
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6. SYMPLECTICS

Let 61 and 62 again denote small variations from one dynamical orbit to two others, for

fixed values of the independent variable t:
Gt = S, =0

Let X, and X, denote the small variations of q and p arranged as column matrices:

--%\Oh“1 —32%|W
8\ P| 87. P|
X, = | 919, 6.9, (40)

%l bl 82.P&

<
r)
L

- —

LT LT

The Lagrange invariance of (37) then takes the form

X, \q X, = constant (41)

where n is the square matrix

—O e} ol - —1 %% T 6?(1
-1 o O - - 5b, -99,

o 04, S PZ
8 b

(42)

s

| H

0

o ¢C|G —
l o
Qo -
1 \
\ )
s
—_
)
]

[eal
P

-

A B R i |

The tilde (~) denotes, as usual, transposition of rows and columns. In particular, §1 is the

row matrix

[_ 25\(1; 9 E’\ bl ) E)\CLL ? %5‘ r>11 T il

In the course of dynamical evolution, from time t to time t', the small variations will

undergo (to linear approximation) a linear transformation,

x = SX (43)
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where the square matrix S depends on t and t'. From (41)

%Ih)(i = %sz (44)
or

A ~
X.SHSXZZ X, b X - (45)
This is so for arbitrary X1 and X2 if, and only if,

§L\%=L) " gH:HS_l. (46)

Such a matrix S is said to be symplectic. Note the partial analogy with orthogonal matrices
0:

o = o'.

An equation such as (46) for matrices holds also for their determinants, so

(O\et g)( Azt L\)( Aek 3) - det "( .

det §= det &, dekl = 1 + o |

we have then

1
|+
-

det S

(47)

For a small time interval
SaA . det S= + 1,
It follows then by continuity that

ak S = 1 (48)

always. This is Liouville's theorem. As we have derived it here it is a theorem about small

deviations from any dynamical orbit to any neighbouring orbit. It can be expressed in two
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other ways. The determinant of S is just the Jacobian of the transformation between

9 P --- and q;, p;, ... . So this Jacobian is unity:

{

B(cl/llv bl/v, q(z—{) \717 - ’-)
ZB(LCL‘ﬂ t>‘7 Cvz1, Pz, - ')

And since the Jacobian gives the ratio of corresponding small volume-elements in (q, p) and
(', p'):

= 1. (49)

S da,db, dq,dp, - - - = g d%.lo 0\\’,/, fl‘t‘/, o\bz/— -- (50)
V Vl

where V is some region in (g, p) space; and V' is the region occupied, at a later time, by
the points into which those of V evolve in accordance with Hamilton's equations. We will

refer to (49) (or 48) and (50), equally, as Liouville's theorem.

8. CONSERVED QUADRATIC FORM

The bilinear form
a3
><| L1 )(1.

is conserved by all symplectic transformations S. The quadratic form

Vo= ,)\(/L]TX (51)

is conserved by the particular symplectic transformation T from which it is constructed.
Thus:

¥(FLT)T X

X'hT X

n

~ —_
X LT x
from the assumed symplectic nature of T,
-
TUT = 4.

Let T be the transformation, for one turn, of small deviations from a closed orbit.
Suppose that T is constant from turn to turn, so that the evolution of X is given by
repeated application of the same transformation T. Then the quadratic (51) remains constant
throughout the motion -- always in the approximation linear in small deviations. It may be
that the quadratic (41) is positive- or negative-definite, i.e. not zero for any X. Then its
constancy guarantees that the motion is bounded (always in the linear approximation).
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In the case of only one degree of freedom (or of one degree of freedom decoupled from

others) n and T are 2 x 2 matrices:
o | _ o b
[,l { T = , (52)
-t 0 < d
~s

U= XhTx = s, (£5q v Aasp) -sh(0sqg + bep)

1l

1 (i
= c(@®9) + (o\-—Ox)S‘LSF -~ b (%b) . 3
This is definite (given det T = ad - bc = 1) if

(0\"* O\\Il /H— <1 (54)

and then has always the same sign as c (or -b).

In the case of several uncoupled degrees of freedom, U is a sum of similar

contributions from each:

n

U + VU, + - - -

< (® G\A\z + (‘A\“O\‘) o0, b — by @’\7‘\1 .l
" (55)
F (500 + (A-0)89, 6 = ba(eh) + - -

If all the Un are positive definite (or all negative definite) then U also is positive

v,

|4

definite (or negative definite). Small changes in the coefficients cannot immediately change
a definite form into an indefinite one. So the stability (in linear approximation) of the
uncoupled case survives the introduction of small enough coupling terms. This has some
significance in particular for the coupling of horizontal and vertical betatron

oscillations.

(For analysis of other conserved quadratics, X n ™ X, see J.S. Bell, AERE T/R1114,
January 1953, and AERE T/R1383, March 1954.)

9. ARACTER c NENTS

Consider again the problem of following small deviations, from a closed orbit, around
many turns. If the transformation for one turn is T, and is constant from turn to turn,

after n turns

( v

X = T X . (56)
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To evaluate this it is convenient to introduce the eigenvalues Ak' and the corresponding

(k)

eigenvectors X , of the matrix T. They are defined by

T x = Ag X(k) , (57)

i.e. transformation of X(k) by T is equivalent to multiplying every component by the same

factor Ak' The Ak satisfy
det [T-ATI} =0 | (58)

where I is the unit matrix. This has as many roots Ak as the matrix T has rows (or columns).

(k)

When all these roots are different, the X are all linearly independent. An arbitrary

vector X can be expanded:

(®)
X = Zk' O X ) (59)

From (56) and (57) then

(k)

x'= Y, O‘Qﬂ ap X, (60)
K

This remains bounded for all n if
U\k\ < 1 (61)
for all k. We then have stability -- in the linear approximation in small deviations.

The left-hand side of (58) is a polynomial in A with zeros at A = Ak' and with leading

<—- )\ \ZV\

where n is the number of degrees of freedom of the system, 2n the number of rows (or

columns) of T. Then

det [T- ALl-= —T (Ak'x\ X (62)
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With A = O this gives

1T /\k = det T = 1 . (63)

So the 2n eigenvalues multiply to unity. In particular: no eigenvalue is zero.

A theorem of Poincaré goes further. The reciprocal A" of any eigenvalue A is also an
eigenvalue. To see this, first multiply (57) by

/\h~| T-l

and interchange the two sides:

T @ N x®

(64)

So the reciprocal of an eigenvalue of T is an eigenvalue of 7 '. But an eigenvalue of ' s

also an eigenvalue of T when T is symplectic. For, using (46) and det n = 1,

n

det [T'- A1) = det H\__T"vkﬂ

= det [T 21y

= o\iL{' [;f?: - )\‘I;} >

SO

det LT —A I’X (65)

]

det (T'-21]

(since interchange of rows and columns does not change a determinant, and does not change
the unit matrix I). Equation (65) shows that T'1 and T have the same eigenvalues. So: the
reciprocal of an eigenvalue of T is also an eigenvalue.

x N
Because T is real, the complex conjugate A of any root A of (58) is also a root. So
when

o<+i(3

N = € (66)
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is an eigenvalue of T,

>\* = e"‘"‘ﬁ (67)
—b —

}\\ = e ¢ (68)
-—p(-t-i('s

ny = €

are also eigenvalues. For instability (in the linear approximation in small deviations) we
must have some a non-zero. If the system is destabilized (in linear approximation) by some
linear perturbation, then as that perturbation is diminished the vanishing of o brings two
different roots together:

N o= Q\V'B*—“’ eiP ‘ (70)

Conversely, if a system is stable (in linear approximation) and all roots A\ are different,
it cannot be destabilized by an arbitrarily small linear perturbation. For instability can
set in only when the perturbation is strong enough first to bring two previously different
eigenvalues together. (One zero of a polynomial cannot suddenly turn into two when the

coefficients are varied continuously.)

The logarithms, o + ip, of the eigenvalues A are called the characteristic exponents.
For stability they must all be pure imaginary. For while a negative a in (66) gives a
decreasing term in (60), the corresponding reciprocal eigenvalue (68) gives an increasing
term.

10. ONICA R N

The variational principle (23) greatly facilitates change of variables. Let the old
variables (q, p, t) be functions of new variables (g, p, t) (and vice versa), and let
fi(3, p, t) be some function of the new variables, just as the Hamiltonian H is some function

of the old (q, p, t). The transformation is said to be canonical if for arbitrary small

changes in the variables
(S psa - Hst)- (. Fsq-nst)=SF o

where F is some function of the old (or new) variables. Define for any path

W g (\70\%— HO\’C) (72)

1

I

w

g ('\;o\cf, - H o\'\é) W+ [F]L NS E)
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This will be the first of a series of canonical transformations. At each step the new
variables of the old transformation become the old variables of the new transformation. We
will then drop the bars (-) in their notation.

12. CHANGE OF INDEPENDENT VARIABLE
Introduce the notation

bo . (88)

1l

t =9, , —H

Then the basic stationary principle

s§(’flb%*““)=o
becomes

N
%S 20 bPubtqu = o . | (89)

The apparent asymmetry between t and the coordinates g has disappeared. Clearly we can take
some coordinate other than q,: say ay = t, as the independent variable. Then Py becomes the
Hamiltonian. Solving

—bo = HO 9o - - %va\"‘\’N)
"bN = \:\(ol/p‘ "%N‘)‘P""’buq) (90)

defines the new Hamiltonian function H. Then from (89) we have Hamilton's equations

ddy _ 28 db,_ 24

n=o0---N-\ » (91)

At 2h Y AF T T 3g, ]

with t = as the independent variable.

dy

For example, from the Hamiltonian (87),

_ 1
H o= /c[chz+ (bg_eAs\l(wx/e) 2+ (b,(—eAd

+ (b= ‘ekz\t yh + € 4’ (92)

taking s as the independent variable, and solving for Py We have the new Hamiltonian
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L

= -es 3 (10 )[R (peend-Goehi]

and the Hamilton equations

——

de _ e Ak oM

Ads  dbe | AS ot ]

ax _ 2H dbe M (50
AS b | as  ?x 7

de _ W db,__ 2l

d b ' dg 22 °

This general method of changing the independent variable is strongly recommended as compared
with ad hoc approaches (for more detail, see M. Bell, AERE T/M 125, June 1955).

13. SCALING

Consider a change of variables such that

Zb%ob~\-\gt.—_ C(Z'\S%ﬁ,—\-\%q (95)

where C is a constant. When C = 1 this is a canonical transformation [with F

but not otherwise. But even with C # 1 the Hamilton form of the equations of
preserved. This is so because

_g‘po\O\,~Ho\t=C§—\5d@—¥:\0\1 (96)

and the stationary principle

%S bdq -Hdt = o

= 0in (71)1]
motion is

(97)
(with q, p, t fixed at the ends) is equivalent to
%S -\')O\ZL—Ho\E = O (98)
(with q, p, t fixed at the ends).
And from (98),
43 20 ab JH
- = - 5 -_ =" . (99)
At 2b at 29



For a canonical transformation

};ps% - 205%71 - SF .

ﬁJ(b?&._';ﬁi) - °F , (112)

N ? - 24 _ F
Zo'(\,%%’-.b?_%) - -—,U_ (113)

Differentiating (112) with respect to u and (113) with respect to v, and remembering
1
F /2w ov = VE/ 2V U

etc., we find

"

N

T (22 2 on)

o 22U U own
That is, the Lagrange bracket

[U,'\f.l = Z ’ai“ B—@_’a&‘&l (115)
0

N - - - -
:E: (‘?1J2 ?i:y - ?lk .?f& (114)
S JU DV DUU -

is unchanged when the variables (q, p) are replaced by others related by canonical

transformation to the originals.

Consider now a small variation from the point (u, v, ...) in which only u is varied, by

s5u, and v etc. are held constant. The variations of the canonical variables are

29 - 09
09 = IO S 9 = OLSU7.L

_ - (116)
s.b = Fhsu . S0P - ghEw |

LY

Consider also a second small variation in which only v is varied, by 5v, and u etc. are held

constant. The variations of the canonical variables are



7.

2 - _ ?9
800 S5V . A =55V
_ S (117)
- 2 T . 2 ‘
0. p = b—%sv ,  Sab = BV

Multiplying (114) by (8u) (&v),

i\-l ( b 9.9 ~ 69 S,,_g = Zo,( 8,p $.9 - 5“‘181-\7) . (118)

That is, for any two variations 61 and 62 from a given state, the Lagrange bilinear

(119)

S (6.p 5.9 - 5.9 5.b)

is unchanged by canonical change of variables. As a particular case, it is unchanged by
dynamical evolution [Eq. (37)].

17. LIOUVILLE INVARIANT

Consider now transformations in which the independent variable is unaltered:

E = ©

. (120)

And consider small variations in which the independent variable is not varied:

St = %t = O - (121)

Let the other small variations be arranged into column matrices:

—S| q/‘ 87. q/\
6| bt 32 p‘

6\ %1 81 q""
%( bl Sz Pl

i
>

M

X2

.
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The Lagrange bilinear (119), omitting the n =

0 term by virtue of (121), is then
4™
X\l’\ X o

where n is defined in Eq. (42). The expression (112) is unaltered by canonical
transformation, because of the invariance of (119). That is,

X 4 % o= Xihx
where

~

=
H

S -
c.t‘ ote.
8\ bl
5,0,
8. b

L

-

The small variations are related, in linear approximation, by a linear transformation

;Z = L X .
From (123),

XLy Lx= Xh X

for arbitrary X, and X, - Then

Thi=l.

that

(125)
The matrix |_ of a canonical transformation is symplectic. It follows immediately from (125)

(Aek L\’L =

In fact

(126)

det =

(127)
[See, for example, Hammermesh: Group Theory (Addison-Wesley Publ. Co., Inc., Reading, Mass.
1962).]

208,70 | 4
3, b))

1
Equivalently, the Jacobian of a canonical transformation (which does not change t) is unity

(128)

(124)

(122)

(123)
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Equivalently, the volume of a given region in (q, p) space, at given t = t, is the same when

measured in terms of canonically transformed variables q and p:

N N NN
g [T dq T1ap = S_ \Tagq 1tap. (129)
R R

Remember again that qo(s t) and p, are not included in (128) and (129), and the canonical
transformation here has t = t.

18. ONE D

Consider a system with one degree of freedom only, i.e. one p and one q (not counting
P, and q, = t). Consider a canonical transformation with t = t. Applying (110) to a closed

curve along which dt = dt = 0,

§\Dr}x61, = %Y")‘Eb ] (130)

This line integral is equal to the area enclosed by the curve. So this Poincaré invariance
(130) is equivalent to the Liouville invariance (128) or (129). It says that the area of a
given region in phase space is the same whether measured in the original q, p or in the new
q, p. It will be shown here that for one degree of freedom this area invariance is not only
necessary for a canonical transformation (with t = t) but also sufficient. That is, given
(130), there are functions F and H such that

(b%%— H St)—(-psﬁ,*\t\%t) = oF . (131)

From (130) the integral

P, b
j (p dq - b Aﬁ,) (132)
%“1 ‘P“

depends only on the end-points, (q", p") and (q, p), and not on the choice of path joining
them -- for the change in (132) on going from one path to another is just

§ (pag - po7)

where the closed curve is formed by going out along the second path and back along the
first. This is zero by (130). So for arbitrary fixed (q", p"), the integral (132) defines a

function of g and p

%, P
5 X (bé\q,-— EA?\/): F(‘b,\’) (133)
%l‘s "

and when q and p are varied,
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S F :b%%—-\;%ﬂ . (134)

All this is for fixed t = t. In general, F will depend on t, if the transformation is time-

dependent, and when t also is varied
%F = \D%"L‘Toﬁi fA(C[,,P,t\S\: (135)

where A is some function of the variables indicated. Define now

Q(;L-:Ev"\: H(%>P>‘=)—A(%,\?,E). (136)

Then (135) reduces to (131). That is, if a transformation from (q, p) to (q, p) has the

area-preserving property, it is part of a canonical transformation.

From (135) note that

— oF
= H-H = R \ - . (137)
A ot ba,n

It is important here, in the partial derivative, to be explicit about the variables (q, q)
that are held constant, as well as the variable t that is varied. For in (133) we indicated
that F be regarded as a function of (g, p), and the conventions implicit elsewhere in these
notes would imply for the notation

2F /ot

the explicit significance

%F/B\:\%v

which is not what is needed in (137).

19. ACTION AND ANGLE VARIABLES

Often we are interested in an oscillatory motion characterized by an amplitude or a
phase. Suppose the motion traces a closed curve in the (q, p) plane (Fig. 5) as the
independent variable t increases. The 'amplitude' of the oscillation might be defined by the
maximum value of q, or the maximum value of p, or in some other way -- for example by the

area of the closed curve. This latter definition gives what is called the action variable J:

_ orea _ A

The area between two curves of slightly different J (Fig. 6) is just

211 VANEEN ) . (139)
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The angle variable y of a point P (Fig. 6) is then defined as the fraction of the area (138)
which lies between P and some reference point -- for example Pu' where q takes its maximum
for the given J -- multiplied by 2m:

’\.Y _ LiM area betweey Pona Po , Jona J+ad
= (140)

ATF->0 AT

Clearly, from (138), ¢ increases by 2w as P makes a complete oscillation from Pn’ around
clockwise back to P0 with J fixed. The definition of J and y in terms of areas in the (q, p)
plane is such that the area of any region in that plane is given equally by

[ oq ap

and

(a7 ay .

That is, the transformation from (q, p) to (J, ¥) preserves areas, Or has unit Jacobian

3(%,?\/5(\P,J) = 1 (141)

and is therefore a canonical transformation (Section 18).

The reader should, as an exercise, construct the canonical transformation explicitly
for harmonic and anharmonic oscillators. Here we will treat the slightly more complicated
case of betatron oscillations in a storage ring. (The treatment of phase oscillations can be
done in a similar way.) The complication is that the Hamiltonian, say (104), depends on the
independent variable s. However, it does so in a periodic way, and then in the linear
approximation the motion does trace out repeatedly a given curve, as in Fig. 5 (an ellipse
in this case), provided attention is fixed on a given s and equivalent points s + ¢, s + 2c,

, where c is the circumference. The transformation from (q, p) to (¢, J) is then
s-dependent -- but periodic with period c.

20. SMALL DEVIATIONS FROM CLOSED ORBIT

Let the transformation T of Section 8, for some degree of freedom which decouples from
the others, be written

T

(o) [
c o

cos M+ & sin }X (5 S N

L

—~Y sinpm tos M - o SIV M (142)
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so defining the parameters o(s), B(s), y(s), w [as in Courant and Snyder, Annals of Physics
3 (1958) 1].

We assume
siv + o (143)

and make the convention

(B t2> o (144)

and note that

2
O\QJC T = [3Y'—°( = A . (145)
The conserved quadric form (53) becomes, denoting the small deviations &q and &p simply
by q and p,
1 (R
U = €9, +(o\—oﬂq,\>—\>\> (146)
. P
T —sin M (Yol, + 20thbq + [L\>") (147)
2
. (8 &
= —Siv M (q’/ + (3(\3+~<1,))_ (148)
(® ¢
The constancy of U (when s is increased by c, 2c, ...) defines the closed curve of Fig. 5

for given s and the given oscillation amplitude. The action variable J is then defined by the

area enclosed by this curve, or equivalently the integral around it

;[.': 5%%1 gé ‘; C*‘L i (149)

The integration is simplified noting that (148) allows the introduction of an angle ¢ such

9, = ;B\U/Sim)u W Cos Y l
\o+%q, = “Ugiup m (= sin \y)[

(150)

Then from (149)

J = —V /2sivn M (151)
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whence from (150)

g = B3 Jp cos ¢
\>+%q, =~\E_—¢J—‘7(; smnyﬁ .

Moreover, by elementary inspection of areas, or by verification that the Jacobian (141) is

(152)

unity, ¥ can be identified with the angle variable of the last section.

The methods of Section 18 could be used to construct the generating function F of the
canonical transformation, from (q, p) to (¢, J), and the new Hamiltonian ﬁ(w, J). However,
the generating function is of little interest when we already have the transformation
explicitly in (152), and know that it is canonical. The Hamitonian H can be obtained more
quickly as follows. From Poincaré invariance (Section 4), the integral (149) is independent
of s:

-
!
)

1. _F

- —
—

S CA\Y

—

(153)

In the linear approximation, an increase of oscillation amplitude simply means increasing q
and p by constant factors; that is, increasing J in (152) without changing ¢. It follows
that dy/ds is independent of J:

= — = I/\)(S) . (154)

where w is some function of s [it cannot depend on ¢, for H does not so depend, from (153)].
From (153) and (154)

H = w(s) J (155)

apart from an unimportant constant.

From (152) the transformation for one turn can be found in the form

q, S A + % Sin A p Siva 9,

1

(156)
b —Y sin & Cos & ~sinall bl

where

N e\\f(s+-vc\ - A (s) . (157)
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Identifying the matrix in (156) with that of (142) gives, using (154),

S+«
M= Qa = g we) as (158)
S

Since w is periodic in s with period c, this shows that p is independent of s. Then (151)
shows that U as well as J is a constant of the motion as s changes continuously (i.e. not
only in jumps of c). Of course these two results are readily obtained by more elementary

methods.

Because w is a function of s, ¢ increases non-uniformly. One can define a related angle

variable ¢ which does increase uniformly:

g !
¢ = ¥ - S wis) ds + MS/ﬁ . (159)

In fact

e /O\S M /:C . (160)

I

The transformation from (g, p) to (¢, J) is still canonical, for

e, bl 3(a, b)) (W, 0)
¢, 7y 2.7 o(&,7)

1 x 1 . (161)

From (160) and the constancy of J the new Hamiltonian is

ﬁ (6(,3‘):: Q\l/ﬁ)]— (162)

An explicit expression for w(s) is easily found in the betatron oscillation case when
b = 0\‘1,/A3 . (163)

Solving (152) for p,
‘p: —\‘izy(ﬁv\ ’\l/‘ + X Cos \k)/ﬂg . (164)
pifferentiating the first equation of (152),

d
dq, /ds = -\ESKX(E w(s) sin +(

=

|

CosS _X . (165)
£ cos y

oL
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Comparing (164) and (165),

nNGY = '1/(5@) . (166)

Also, by the way,

plG) = 2006 -

21. ADIABATIC INVARIANCE OF J

(167)

Let the Hamiltonian be

H("[,,P,S,o(>’ (168)

where o is a parameter (or several parameters), such as mean bending field, which is

constant in a first approximation. In this approximation suppose that an action variable has
been found:

:y. ( Cl’ L) ¥> b S ) S ) . (169)

The rate of change of J is

A3 3T 44 T 4p T 2T e
ad - 22 ZF = Sy = o+ As
ds ~ Dq.ds PPy s o
_ 03 H _ 27 °H +H+B_§éi . (170
EDOL > t’ b a, 2s dot AS

The first three terms cancel together, for J is constant when o is constant. Then

41 | 2T &

—

de  dot dS

. (171)

In general 38J/da will be a function of the oscillation phase §. Suppose now that a
varies very slowly and smoothly. Then J changes appreciably only over many oscillations, and

in calculating this change 3J/da can be replaced by its average over § -- which is
independent of ¢. So

5 J FQT,0) 9% . (172)

That is, the final value of J is determined entirely by the initial J, independently of the
initial ¢. It follows that all the particles lying initially on a closed curve of given J in

the (q, p) plane again lie finally on a different curve of given J. But then, by Poincaré or
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Liouville invariance, the areas enclosed by these curves must be equal. The final and

initial J values are the same. The action variable J is an adiabatic invariant.

22. SMALL CANONICAL TRANSFORMATION

For perturbation theory a form of canonical transformation is required in which old and
new variables are only a little different. Take t = t, and the defining equation for
canonical transformation

SF = F%CL”S;L-*(\’-\—H)S\;. (173)

From this,

%(F'\'F‘{/*E‘L) = G”E) 0q + (0—[,”‘1,\ STD + (Q‘H\ SE . (174)

Now since p will be almost the same as p, (q, p, t) will be a set of independent variables,

and we may regard
F o+ .F@"T”L = )\X(ﬂ,,E,t) (175)

as a function of them. From (174) then, and generalizing to many degrees of freedom,

- RS
YJW = ‘>“ + A ;;_a;n !
— X
C[,V\ = Yn + >\ ﬁ“ ) (176)
q = KB o+ A LU

¥t

When A is small, the new and old variables are almost the same. We have the desired form of
canonical transformation.

There is no approximation in (176). If we work only to first order in A, the difference
between p and p can be neglected in the coefficients of A in (176):

- b —XN¥X /29 |
a-9 = AIX /2b (177)
| Nox /at

I

i

H-H
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Compare these with the infinitesimal form of Hamilton's equations

59
o H

il

~st ?H /29

I

S e 3\_\/3\3 (178)
St aH/2% .

That is, Hamilton's equations give an infinitesimal canonical transformation. We see again

that dynamical evolution generates a canonical transformation.

23. CANONICAL PERTURBATION THEORY

Suppose that when some part of the Hamiltonian is neglected there is a canonical
transformation, to angle and action variables (¥, J), which brings the approximate
Hamiltonian to the form

H. Cﬂ . (179)

The same transformation from (q, p) to (¥, J) will still be canonical when used with the
complete Hamiltonian, transforming it to

Ho (@) + U(\(/,?S,s) . (180)

We look for a further canonical transformation to remove, as far as possible, the dependence
of the Hamiltonian on ¢ and s. To the extent that this can be done, the new Hamiltonian has
the trivial form

Then

(181)

Because y is an angle, and because we deal with deviations from a closed orbit of
circumference c,

1

Ulw+am, T,59)
W(w, T, s+ <)

U(w. 7, &)1
Uy, T, s)S_

(182)

1}
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Because of these periodicity properties, U can be developed in a double Fourier series
_ ]
U"" Uoo+u
Ul

{1

2, Uow (3_> Cikq/ﬁwag (183)

2

where

JL= 2'\7/&3 . (184)
The summation [' is over all positive and negative integers ¢ and m, omitting the term ¢

m = O, which has been separated out. To allow explicitly for more than one degree of
freedom it must be understood that

Y = 3 AV

with as many angles wn, and integers Qn’ as there are degrees of freedom

(185)

Consider now a canonical transformation of the form (175), absorbing however the factor
A into the definition of X:

T = T+ @HAYIX(Y,T,s), (186)
Yy = VYt (3/33)X(W7j,337 (187)
0 o= H + @/s)X(Y,T,s), (188)
= H(F) + (W) /27)(3-T)
+VUoo(T) + V(W,T,s)
+ X (¢, T,s)/?S + R, (189)
where R is of second order in U and X. Calculating (J - J) from (186), and defining
w(s) = 3N /27, (190)
we have
0 = Ho(T) + Uoe(T)
+ (W, T,s) + R (191)
where

\( = ;DSX WV, 7, S\ +L\)(I) \{/ (W.,E:,S) + U’(W,F,S) . (192)

We can make Y zero, so that H is independent of ¢ and s in first order, by taking

. _ IRy +HImRS
X - 2 "Uam(J);e

wman + X w( 57)

(193)
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provided there are no integers m, 11, 22, ..., other than 0, 0, 0, ..., such that

Ve F ©, ma+ D Quun(F) = o. (194)
n

The new Hamiltonian will have § and s dependence, and corrections to (181),0only in the

second order of small quantities.

The process can be repeated, pushing  and s dependence to higher and higher order,
subject at each stage to (194). The study of whether this process, repeated indefinitely,
converges, leads to the famous KAM theorem. Roughly, there is convergence at ‘most' points
in w(J) space when U is small enough. But U must be very small for the proof, and
arbitrarily small changes in parameters cause infinitely many changes from convergence to
non-convergence and back again. So the relevance of the very beautiful theorem to real

machines is obscure.



Fig. 1 Poincaré invariant.

Fig. 2 Lagrange invariant.

Fig. 3 Poincaré invariant as sum of
Lagrange invariants.

Fig. 4 Curvilinear coordinates for
point P off reference orbit.

Fig. 5 Area is 2wJ where J is
action variable.

Fig. 6 The shaded area is $AJ
where y is angle variable.
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ON NANC

E.J.N. Wilson
CERN, Geneva, Switzerland

ABSTRACT

Building on classical Hamiltonian dynamics, this paper
shows how a number of transformations can isolate the
perturbation due to nonlinear terms in the guide field of
a synchrotron. The concept of a resonance in transverse
phase space is extended to include islands in phase space
and the catalytic influence of synchrotron motion on beam
diffusion.

1. INTRODUCTION

Hamiltonian mechanics is not everyone's cup of tea. Even experienced
synchrotron designers often avoid the use of canonical transformation exer-
cises to solve the simpler problems like the influence of sextupole magnets
on betatron motion. It is true that for these problems a simple physical
model can be used in which a sextupole is imagined as an element whose focus-
ing strengths increase linearly with radius1). Such a tangible model related
to the familiar concepts of optics is a valuable key to the door of nonlinear
theory and may be used with great effect to predict resonant behaviour near a
third integer resonance. One may extend this model to higher-order multipoles
and into two degrees of freedom but at some point the handwaving becomes too

vigorous to be credible.

Unfortunately, the topical problems of nonlinear theory applied to
today's accelerator and storage rings include high-order resonances in three
dimensions which can cause an inexorable beam loss over periods of hours.
Typical of these problems is the influence of the beam-beam potential seen by
a particle traversing an oncoming bunch in a collider. One can tune the Q
values to avoid all low-order resonant conditions so that it is only the
higher terms in the polynomial expansion of this potential which are impor-
tant. The intuitive model is difficult to apply to polynomial terms which are
typically of tenth order and it is worth taking the trouble to become adept
at the Hamiltonian formalism to solve such a problem.

In the contribution which precedes this onez) , J. Bell has laid a firm
foundation for the understanding of this formalism. In this contribution I
shall first take his expression for the general Hamiltonian of a particle in
an electromagnetic field and judiciously simplify it by approximations which
are valid for large synchrotrons. This will reveal one of the advantages of
the formalism, that each term in the multipole expansion of the field has a

one-to-one relationship with a term in Hamiltonian.



- 42 -

The next procedure is to apply a number of canonical transformations
which remove the 1lower-order 1linear terms in the Hamiltonian. To the
uninitiated these transformations are unnerving in that they bring one
further from the everyday world in which our familiar optics can be applied.
However, their power lies in the fact that the nonlinearity is isolated and
we are able to plot its effect as a trajectory in a phase space in which
ordinary dynamics is reduced to circular trajectory. The perturbation of the

nonlinearity becomes immediately visible.

To help the reader chart our course we list the canonical transform-
ations to be applied in the form of a table. Each one is to be found in
Ref. 2.

Table 1

Canonical Transformations

. Final
Transformation Purpose .
Coordinates
1| Change of Express as function of s, x x's
independent variable not t. '
2] To action I, 0,y
5 I 1
angle variables (J, ¥) Remove variation of focusing
3| To the coordinates with azimuth. J " s
of a harmonic oscillator 1. ¥4,
4| Infinitesimal Non-linear terms become J v s
point transformation first order perturbation. 21 V2,
5| change independent Opens the way to finding J ¥ 0
variable to 8 a periodic solution. 31 W3
Freezes the trajectory in
6] Transformation to a a stroboscopic picture of J v 9
rotating coordinate system | closed curves, islands and br Why
separatrices.

When this series of transformations is complete we shall have travelled
a long road. Many of the steps on the journey will have to be taken on trust
by those not yet skilled in imagining the new canonical transformations ne-
cessary to recast variables in a simpler form. It may help to think of each
transformation as an imaginative leap like solvinga hard integral, adifficult
step for the uninitiated but easily checked once it is identified. In the end
we shall find a simple geometrical trajectory which exhibits the physical
features of resonant behaviour including unstable and stable fixed points,
islands of stable motion, separatrices and stochastic layers which can lead
particles to ever growing amplitude and cause the diffusion which it is our
aim to explain. The position and separation of these features in phase space
are precisely related to the coefficients in the field expansion of the real

world.



- 43 -

In the remainder of this report we shall explain each of these trans-
formations in some detail and then discuss the effect of nonlinearity in
creating unstable regions of phase space, on the width of resonances and on
the growth of amplitude when crossing resonances. All this will be treated
for motion in one degree of freedom. We shall then see how by adding a
further degree of freedom, synchrotron motion, the topology of phase space is
altered and sketch out how one may lead to the Cherikov limit beyond which
slow but continuous beam growth occurs. A criterion for purity of magnetic

field then emerges.

We leave the details of discussion of the consequences of adding a sec-
ond transverse degree of freedom and a third dimension to the field shape to
other authors3) but indicate the qualitative consequences of these extensions

to the one dimensional model.

In all sections of this report, we shall refer to J. Bell's contribution
to the 1985 CERN Advanced Accelerator Schoolz)

vised to have at hand. Another useful reference is E.D. Courant, R.D. Ruth
4)

which the reader is well ad-

and W.T. Weng

The next section describes the 1link between the rigorous and general
treatment of Ref. 2 and the simplified Hamiltonian which is the starting
point of our discussion. The reader may choose to omit it on first reading

and pass to Eq. (8).

2. R (0) HAM

It is a good idea to start from one of the fundamental expressions to be
found in text books on dynamics in an electromagnetic field. We shall rather
soon introduce approximations which are justified in the context of a modern
synchrotron. Watch these carefully. If your particular synchrotron is a small

one you may wish to review their validity.

Reference 2 gives the general Hamiltonian for a charged particle of
mass, m, and charge, e, in a magnetic vector potential, K, and electric po-

tential, ¢:

H=ep+cV(p- eA)2 + m2c2 , (1

c is the velocity of light,
A and ¢ are functions of space and time,
P is the momentum conjugate to the space coordinate.
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We shall choose the coordinates shown in Fig. 1. The transverse dis-
placements are x and z while s is measured along the particle's trajectory.
The local radius of curvature, o, is dependent on the local magnetic field
and is therefore a function of sS. We can express the Hamiltonian in these

coordinates as:

-2 1/2
H = c{mzc2 + (ps - eAs)2<1 + %) + (Px - eAx)2 + (pgz - eAz)Z} + ep . (2)

Local centre
of gyration

Central orbit

s ( Tangential to beam direction )

Fig. 1 Transverse coordinate system.

From now on we shall drop ¢ which is assumed to be constant. We are only

considering magnetic and not electric fields.

The independent coordinate in (2) is t but it would be more convenient
to use s since the machine turns out to be periodic in s. In his treatment of
scaling Bellz) gives explicitly the canonical transformation for this change
of independent variable. The reader may remember that since H is conjugate to
t and pg to s, one may turn the Hamiltonian (2) inside out by writing a new
Hamiltonian, K, which is really -pg expressed as a function of the other

canonical variables together with s, the new independent variable:

2 1/2
K = -eAg * (1 + %){(gl) - m2c2 - (px - eAx)? - (pgz - eAz)Z} . (3)

We can further apply simple scaling to new coordinates (with a bar):

E=QI §=sv E=BI K = ' (4)

P

LR

where

Pc = 'Vpg - mc2. (5)
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So that

— eA X — eBy\? — eh,\2 /2
K=——s-(1+—>{1-<px——’—‘> "(Pz"‘g)} . (6)
P e P P

Finally, in our attempt to recast the Hamiltonian in a more tractable
form, we shall ignore the vertical plane and approximate by assuming o = .
Furthermore, we shall assume the magnetic field is only transverse so that
Ay = A, = O.

These drastic measures should not be forgotten. They are completely
justified to study horizontal motion in a large synchrotron comprising long
magnets but would have to be re-examined in the case of a small machine in
which the end fields of lattice elements are of importance. With these reser-
vations we obtain a new Hamiltonian which we call H because we are running
out of alphabet:

eA —
Hx - —= - (1-p3)"2, (7)
P
and if py « 1,
=2
eA P
H~ - —2 4+ X | (8)
P 2
3. HE MAG C VECTOR POTENTIA OR L LE

It would be difficult to unravel the problem of nonlinear motion in a
synchrotron if we were not able to analyse magnetic fields in to a series in

which each term corresponds to a magnet with a certain number of poles.

We have already announced our intention to ignore the ends of magnets
where there can be transverse components of the magnetic vector potential and
restrict our analysis to the body of long magnets where only Ag is finite and
there are only the transverse components of field, Bx and B, . This has the

virtue that the vector potential can be expressed by a series:

]

Ag g Anfn(x, z ) (9)

L Ap(x + iz)n .| (10)
n

In this expansion f, corresponds to a multipole with 2 n poles. The real
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terms form a series for "normal" multipoles for which the field is normal to

a horizontal mid-plane and the imaginary terms correspond to skew multipoles.

We can derive the vertical field component for a 2n pole magnet:

- L xPTh (11)

Bz(z=0) = =n A

and we can write this as a term in the Taylor series:

B, (z=0) = x(n-1) (12)

We can also write the first term in H (Equation 8) as:

eAg 1 1 a(n-1)p,
—_— = — —_— —— n
P Bozn! ax(n-1) X ¢ (13
and our Hamiltonian becomes:
2 -
1 1 3ln-1)p
H = X, - Z xn . (14)
2 (Bg) nt ax(n-1)

=0

We immediately see that each order of multipole will contribute a term
to the Hamiltonian. It is hardly a difficult step to see that if we were to
allow both transverse degrees of freedom a normal multipole with 2n poles can
contribute a set of terms xN, xN-2z2, xh-4;4 yhile a skew multipole, cor-
responding to the imaginary terms in the expansion of Egqg. 10, would introduce
the missing terms xN~'n, xN-3z3 .. in the homogeneous polynomial. It can be
shown that each term corresponds to a line in the Q diagram, so this is
helpful in identifying the kind of error which may cause resonant loss at a
particular working point.

4.  LINEAR DYNAMICS IN ACTION ANGLE VARIABLES

Readers who are already familiar with the theory of transverse dynamics

will remember that linear motion is described locally by Hill's equation:

d2x

382 + k(s) x =0 . (15)
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This is a differential equation with a periodic coefficient. The focus-
ing strength, k(s), repeats every turn of the ring, or even every super-
period, if the lattice has a symmetry within a turn. The periodic variation
of k(s) distinguishes the solution from simple harmonic motion giving rise to
an amplitude function, /B(s), that varies periodically with s reflecting the
focusing pattern, k(s). The motion can be converted into that of a harmonic

oscillator with a simple sine like solution by a change of variabless):

X
= 2 16
n = (16)

We can see that the Hamiltonian (if we take only linear terms) has the

same periodic coefficient:

g = B2, k(s)x2 : (17)
2 2
where:
1 3B
= —z (18)
(Be) 9ox

Incidentally it is an excellent eXxercise for newcomers to apply Hamilton's

equations to (17) and thus derive Hill's equation.

Expressed in the jargon of Hamiltonian mechanics the difficulty with
Eq. 17 is that H is not time-invariant. (Remember that earlier in Section 2
we used s instead of t as an independent variable). The difficulty is really
the same as that with Hill's equation because if the Hamiltonian were to be
time invariant it would generate the differential equation of a harmonic
oscillator, and the trajectory of the particle in phase space would be the
same closed ellipse independent of the observer's position, s. The trajectory
could then be labelled with a numerical value, a constant of the motion. The
momentum conjugate to any coordinate which is not in the expression for H is

invariant, this applies equally to H itself which is conjugate to s.

Perhaps this is the first inkling for the diffident recipient of Hamil-
ton's legacy that it might be of some practical value. He or she will be
pleased to learn that the canonical transformation to action and angle varia-

2)

bles discussed by Bell is Hamilton's solution to this difficulty.

If we were to derive Hill's equation from the Hamiltonian (17) and solve

it we would find:

Yy = E1/281/2(s) cos[p(s) + 6] (19)
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s
«p(s)=/ s, (20)
B(s)
(o]
where
y is the general transverse coordinate,
Q is the betatron wave number,

B(s) is an amplitude function periodic in azimuth,
E is an emittance defining an azimuthal invariant,

5 is an arbitrary phase.

We must find the momentum which is conjugate to y and for this we use

Hamilton's Equation:

dy _ 9H(y,s) =p . (21)
ds op

By differentiating Eq. 19 we find:

p = —B1/ZB‘1/2(S){sin[w(s) + &) - g; cosl[e(s) + 6]}. (22)

We are now in a position of having physical coordinates (p and y) which
are conjugate according to the rules of Hamilton. Neither of them is a con-
stant of the motion. In our desire to freeze out the linear terms it would be
an advantage to transform (p and y) to new coordinates (J and ¢) in which J
becomes independent of time. In Ref. 2, Bell achieved this for the case of a
harmonic oscillator by using a canonical transformation into action angle

variables.

The mathematical procedure for performing this type of transformation is
to construct a function of a pair of old (p,q) and new (P,Q) coordinates

which must have one of the four forms:
F1(qIQlt)l FZ(qvat)l F3(plQlt) orxr Fk(PrPrt) . (23)

In general Fi{ can be used for interchange of momentum with displacement
or mixing them together to form invariants, while F, can be used for ro-

tations or small perturbations in displacement or momentum space.

For the purposes of transformation into action and angle coordinates we
select the first type. There is a prescription for performing the change of

coordinates:



_ oF 4
Pl - aql (24)
o OF4
Py = - —aQ_l (25)
oF 4
K =H + 3T (26)

The way in which this works may be tried out by using the function:
Fi1(q,Q,t) = qQ (27)
to achieve an interchange of initial displacement and momentum.

By using the less obvious:

F1(a,¥,8) = %V/"E a2 coty , (28)

one may reproduce the transformation of the harmonic oscillator into action,

angle variables and obtain Bell's resultZ):

q = /75 (k/m)'* cose (29)
p = -/Z3 (m/k) "/ *sing (30)
J = constant (31)
$ = dH/dJT = w = 1//mk . (32)

Having flexed our muscles in this case we can move to the real problem
of transforming Hill's equation. This is a general form of a harmonic oscil-
lator and it is not surprising therefore to find in Ref. 4 Eq. 4.51 that the
generating function has a form not unlike Eq. 28:

[tanw - gl] X (33)

[N
U

Fi(y,¥,8) = -

We remember that B is a function of s.

The rules for applying this function are:

(34)
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and the new Hamiltonian

oF4
K=H+ — . (35)
90s

The full transformation requires a number of clever substitutions to
obtain J, ¥ as explicit functions of the old coordinates and K as a function
of the new ones. The student may find it instructive to work out the Egs. 34.
The first yields an expression for a tany which can be substituted in the

second to obtain:

1] 2
2J = % [yZ + (sy' - £§x> ] . (36)

This will be recognized by anyone familiar with Courant and Snyders) as

an invariant of particle motion around a synchrotron. Even though B is a
function of s, J is constant. If J is the invariant for the largest amplitude
particle in a beam 2J is just the emittance, E, which includes the beam. wE
or 2wJ is the area of the phase space ellipse anywhere in the ring.

2)

We remember that the action and angle transformation of a harmonic os-

cillator also gave an invariant 2wJ which was the area of the phase contour.

If we were to go through the full transformation procedure (see Ref. 2

again) we would find that the new Hamiltonian is:
K = J/B(s) , (37)
which should be compared with
K = Ju (38)

for an harmonic oscillator. The analogy between frequency and 1/B(s) is ap-
parent. Hamilton's Equations give:

dy _ 8K _ 1 . (39)
ds 0J  B(s)

Yy is none other than the familiar betatron phase advance and we are not

surprised to find:
y = V2JB cosy (40)

y' = - V2378 [sinb - (B'/2) cos¥] . (41
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We have arrived at an invariant momentum, J, conjugate to ¢ but the
Hamiltonian K still varies like 1/B(s) around the ring. To finish the job of
freezing out the linear motion, we need to transform into a new coordinate
system (J1,%1). (Note we use suffix 1 to indicate new coordinates. We shall
continue the policy of adding one to this suffix each time we transform). The
new and old coordinates are related by a generating function of the second
kind. This kind of generating function includes rotations in space and does

not mix momenta and coordinates as does Fi:

S
Faw,J1) = Jq | 2728 —f as_ |4y, (42)
c B
o
S
3F2 210s as’
v = 2F2 ; (43)
"Tan VT e f B(s")
o
oF
g === 3, (44)
3w
where
2uR
2mQ = f gi and C = 2mR . (45)
o

The new Hamiltonian is related to the old one of Equation 37 by:

oF 2n
Ki = K + 22 - 2@
9s 2nR

Q
Jq = E - J = constant . (46)

by

Fig. 2 Phase space trajectory of a linear

system in action angle coordinates.
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We have now reached our aim insofar as the linear dynamics is concerned.
In the new coordinates (Ji9,¥¢1) the trajectory of the particle is a circle of
radius J which is numerically equal to half the emittance of the beam it
includes. The variable ¢ goes from O to 2w in one betatron oscillation. The
Hamiltonian is independent of s (or time). In the next section we shall see
how this leaves the way free to express non-linear motion as a perturbation
of this circle. The circle will be distorted, its circumference will develop

waves and an archipelago of islands will form.

5. RTU EORY

With the linear problem behind us we are ready to use perturbation the-
ory to treat the nonlinear effects. The terms in the Hamiltonian (Eq. 14)
with a cubic or higher transverse dependence are nonlinear. They arise from
sextupole and higher multipole fields distributed in azimuth, s, around the
focusing lattice. Unlike the linear terms they retain their s dependence even
when we apply the canonical transformation to action-angle variables, J¢ and
¢1. In order to reveal the way they distort the perfect circle of Fig. 2 we
must first apply a transformation which removes the s dependence of the Ha-
miltonian so that H becomes a new invariant of the motion. The transformation

which does this will tell us how much the circle is distorted.

The prescription for finding the canonical transformation which irons
out the s dependence is described in Ref. 2 in the Section on Canonical
Perturbation Theory. To help the reader relate to Ref. 2 we should point
out that we add one to the suffix rather than use a bar to indicate a new set

of coordinates
At the centre of canonical perturbation theory is a generating function
of the second type which is an infinitesimal perturbation of the function
which generates the identity transformation:
F2(J2,¥1,8) = Ja2b1 + x(J1,¥1,8) , (47)

where x is small.

The new and old coordinates are simply related by the first derivatives

of this small quantity, x.

J1 = J2 + =2 x(91.32,8) (48)
o1
)

P2 = b + — x(b1,J2,8) (49)
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Hz = Hy + I x(bq,J2,8) . (50)
9s

The first term in Eq. 50, Hji, will contain the unperturbed Hamiltonian
(Eq. 17) plus a small nonlinear perturbation due to one or more of the cubic
or higher terms in Eq. 14. Of course, we must transform this nonlinear term
into (J1,¥1) coordinates using substitutions from Eqs. 37, 40, 41, 43, 44 and
46. The nonlinear terms will give it an s dependence.

our plan of campaign is to choose the function x in such a way that its
differential, dx/ds, exactly cancels out the s-dependence making H; a

constant of the motion.

But how do we choose the exact form of x? At the moment it is arbi-
trary. We can first rewrite Eq. 50 to explicitly include the linear part of
the Hamiltonian, Hg, and the perturbation U. Both are functions of J: but we
apply a trick and will write them as functions of J + 9x/0¢y rather than
Jy. This is to make it easier to identify first and second-order terms when

we expand the terms:

_ ox ox 9x
Hy = Hgo(Jd2 + 307 + Uldq, J2 + 307" s| + I (51)

We next must eliminate second-order terms and to do this we shall use another
trick and introduce three new pairs of terms which cancel. This will help us
group all the terms which are either of second order in U or are independent

of J, ¢ or s in rectangular brackets:

9x Q
Hzo = Hp(J2) + [Ho(Jz + W;) - Ho(J2) - R (J2) m]
(52)

ax J + 2 J ———ax + 21 + U
+ | U1, J2 + W!s - U(p1,J2,8) 'ﬁ' (J2) EYT) 3s (b1,J32,8)-

If we examine the contents of the rectangular brackets very carefully

and remember that (Eq. 46):

Q OHp
R (Jqy) = 377 ! (53)

we find that the brackets reduce to:

1 3QR ;ax }2 , U ox

2 31 332 3y

54
2 83, ' (54)
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which are purely second order and can be left out to give:

Hz = Ho(J2) + 9 (J2) El— + 25 + U(pq,J2,8) (55)
2 1] 2 R 2 a¢1 3s 1192, .

At this point we shall digress to attend to a small detail. The indepen-
dent variable is still s but we shall find it much more convenient as we move
into Fourier analysis to use the azimuthal angle 8 = s/R. In Ref. 2 it was
shown that one may scale a pair of conjugate variables. To preserve the
Poincarré invariant we must multiply H, the conjugate to s by R:

H3 = RHa, 8 = s/R (56)
Y3 = b2 ,
J3 = J2

This gives the Hamiltonian of Eq. 56 as a function of 8:

ox

H3(v3,J3,8) = Ho(J3) + Q(J3) —
oy

ox
+ R — + RU(¢q,Jd3,8) . (57)
ds

To return to our aim of removing the s dependence in the last three

terms of Eq. 57 we can simply impose the condition:

Q(J3) 8 + Ax + RU(¢q,J3,8) =0 (58)
3 301 a8 1193, ]

and H3j will be independent of s.

If we know the driving perturbation U(¢4,J3,8) we can solve the diffe-
rential equation 58 to find x.

To find this solution it is convenient, and physically revealing, to
analyse U into a Fourier expansion, either a single series in ¢, or a double
series in ¢ and 8. The single series method is simpler to start with and is
appropriate if one is far from a particular resonance condition. One assumes
the function x can be also expanded as a Fourier series and then one solves
the differential equation for x term by term, rather in the manner of solving

electrical circuit problems.
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6. T ON E AN

To first flex our muscles in perturbation theory we solve the problem
far from resonance. By far from resonance we mean that the quantity, mQ-n, is
large compared with the width of the nearest resonance. We express the
perturbation as a single Fourier series in ¢, the "betatron" variable. The
index of the summation is +the multipole number, 3 for sextupole, 4 for

octupole, etc.

U = Z Up(J3,0)ei™3 (59)
n=0

The solution to (58), x, will also be a Fourier series:

X = 2{: xn(Ja.G)ei"¢3 ' (60)
n=0

and by substitution in (58) we find:

:)
PnQ(Jg) + 5;] Xn = -RU, . (61)
This has the solution:
8+2m
i i _g-
= — einQ(8'-8-m)y _(p')ae"’ . (62
Xn 2 sinwnQ f n )
8

The function x formed by summation (Eq. 60) will then remove the s
dependence of the Hamiltonian and make the new Hamiltonian a constant of the

motion:

Hy = Ho(J3) + L RUL(J3,8)ei™? (63)
n

How do we use this function x which magically renders the Hamiltonian
invariant in order to deduce the distortions it makes to the simple linear
circle, J1(p9)? We can show that not only is the new H3 independent of 8 but
that J3 is invariant to first order. Equation 53 reminds us that the rate of
change of Y is just Q/R, a constant. It can be shown that the first—orde;
effect of the perturbation is simply to add a small constant term to Q so
that, to first order, J3 is an invariant. We must now look carefully at
Eq. 48. The new J is invariant and so the old J; is defined as a function
of azimuth by the derivative of x. If we know x from computation of Eq. 62 we
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can find this derivative as a function of ¢1 and trace out the perturbed Ji1¥1

circle.

7. RESONANCES

Close to a resonance we must expect to have to take into account partic-
ular harmonics of the error distribution which act coherently with betatron
motion. As a first step we assume that the perturbation is periodic in both ¢

and 8 and expand as a double Fourier series:

U = L Upp(Jz)et(n¥2m8) (64)
in which the coefficients are:
2w 2w+
Upg = — U(pTz2,0)et (M ™) ggqy (65)
(2m)2
0 V2

The treatment follows a parallel path to that of Section 6 and we arrive
at the expression for x and H:

RU .

k=AY g () etmemd (&6
m,n

H3 = Ho(J3) + RUpp el(nd-me) (67)

Again we may use x to compute the nonlinear distortion of the circular
trajectory but close to the resonant condition nQ = m the dominator becomes
small. Therefore, we begin to suspect the validity of our first-order ap-
proximation and in particular our argument that H3 was essentially indepen-

dent of explicit J3 dependence.

Fortunately, if we zoom in on the one resonant term (which we are justi-
fied in doing when we are close to mQ = n) there is a transformation we can
apply which gives an H, which is the exact invariant of the motion and which
yields frozen contours in phase space. We no longer need to apply Eq. 48
assuming J3 = constant since the equation of H, itself defines a contour or
trajectory in phase space. This alternative technique of finding the trajec-
tory only works if we drop all the Fourier terms except the resonant combi-

nation, n,m.

Starting from Eq. 67 we apply an F; type of generating function
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F2(V3,74,8) = <'b3 L J:.) (68)
to find
J3 = J4 (69)
¢=<w3 -%a) (70)
Hy = (Q - 2>Js + RU0o(J4) + RUpy eine (71)

The new angle coordinate means that our reference frame rotates so that
¢ = O advances n turns while ¢ advances m oscillations. This has the effect
of "freezing" the resonance in our new phase space. The result is a Hamilton-
ian which is independent of time and which defines a closed contour in phase
space. We shall use this to explore the examples of third and fourth-order
resonance before generalizing the theory and moving on to explain invariants

and islands in phase space.

We have finished the bulk of the Hamiltonian formalism so a little reca-

pitulation is perhaps in order.

There are two approaches to finding out how nonlinear terms distort the
simple circular trajectory due to linear focusing in (H¢,¢$4) space. The
first, outlined in Section 5 uses first order perturbation theory to find a
generating function, x assumed to be a single Fourier series related to the
azimuthal pattern of the perturbation. Once found, the generating function
tells us the distortion of the circle provided it is small. The second ap-
proach is to use a double Fourier expansion and then change the coordinate ¢
so that it keeps pace with the resonant oscillations at a stopband: mp = né.
This gives an exact invariant Hamiltonian which itself defines the path in

phase space but ignores all but the resonant perturbation.

8. ITHE THIRD-INTEGER RESONANCE

One of the confusing aspects of a generalized description involving a
number of transformations is that we tend to lose track of the numerical re-
lation between the final coordinates and the initial physical system. In this

example we try to give the reader the link between these coordinate frames.

Let us now take a practical example of a sextupole-driven resonance. We
suppose that the Hamiltonian expressed in “"normal" coordinates includes a

sextupole field:
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pz  k(s) 1 92B,
X2 + ——
2 2 3!(Beg) 0x2

(72)

First we must transform into action angle coordinates (J,Y) applying
Egs. 37, 40 and 41 and then, to arrive in a coordinate system in which the
Hamiltonian of a linear system would be a constant of the motion, we apply
Eqs. 43, 44 and 46. The final coordinates are (Ji1,¥1) and the Hamiltonian,
Hq:

Jq + cos3ypy . (73)

Q (2348(s)13/2 a2p,
R 3! (Bo) ox2

The new angle variable, Y4, is defined:

s
- B ds' _ Q4
b v ,/‘B(s) R
o

(74)

s
where P = f ds .
B(s)
0
We recall that the old coordinates are x and x' related to J and ¢ via:

X = {/535737 cosy

(75)
p=x'=-+v2J/B(s) siny
We can now make use of the purely trigonometrical relation:
1
3 = e— + .
cos3 YEETY (cos3y, 3 cosyi) (76)

Ignoring the second term which in general does not drive a one-third-
integer resonance:

Hqy =

23/2 J 3/2 3/2 32p
2, +[ . L2 1121 N (77)

R 2371 3! (Be) dx2
The second term in this equation is the perturbation, U, in Egs. 55 and

58 and, applying directly the result of perturbation theory at a resonance
(Eq. 71) we have:

Hy = (Q - %) Js + RU3p cos3ep . (78)
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The Ugp term in Eq. 71 is zero for m = odd multipoles. Here U3, 1is the
double Fourier coefficient (with respect to ¢ and 8) of U(¢y,8) and written

explicitly is:

2wR

S
Bl | }[ ga/2ge 1AL (1/8I-(@/R) Jas:

Usg = 0 e-ims/Rgs . (79)

31(Be)23" ' [ 2wR

In addition ¢ is given by Egq. 70.

The integral exponent merely takes care of the relative phase slip of
betatron motion with respect to Q8 which occurs between quadrupoles of a reg-

ular lattice. In many cases it may be ignored.

Note too that the content of the curly brackets is none other than

Guignard'sG)

state from which one may generalise for any multipole with 2m poles:

dp. We have left the powers of 2 and factorials in their crude

2R

S
ifn((1/8)-(Q/R)])ds"
! ./. gn/2p(n-1)¢ 0 e~1ms/Rgs). (80)
2wR

(o]

Jn/2
n!(Bg)2n-1

Unm =

Having computed Uy, numerically, we can substitute back in Eq. 71 to
find the Hamiltonian for any desired order of resonance. It is worth remem-
bering that the expression for Upy becomes much simplified when one does
the Fourier analysis for a single short sextupole or a random distribution.

GuignardG) gives expressions for dp, the curly brackets for this latter case.

9. Cc Y IRD-IN R _RESONANCE

All this has become very mathematical and the reader may be forgiven for
a little impatience to see some phase plots showing the perturbed trajecto-
ries. In order to find the shape of these phase plots we must take a hard
look at Eq. 78. We shall drop the suffixes from the notation and examine the

contour defined by the Hamiltonian of Eq. 78

Hy = (Q - %)Jg + RU3p cos3e . (81)

Rewriting it to show the J dependence and defining constants & = Q-(m/3) and
€ = RU3p/J3/2 to obtain a streamlined:

3/2

H=086J + eJ cos3¢p . (82)
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If the coefficient of the second term is small, either because the
amplitude is small or the driving strength is weak, the contour will be close
to a circle (J = constant). The same will be true if the Q is distant from a
third integer making, &, the coefficient of the first term large.

If the converse is true the circle will be distorted inwards when ¢ = O,
2w/3, 4w/3 and outwards inbetween to become somewhat triangular. Note that
this triangle does not rotate but is frozen in (J,p) space - a consequence of
the change to a rotating coordinate system. Figure 3 shows constant H con-
tours in J,V space. We can see this kind of distortion growing with

amplitude.

Separatrix

Unstable fixed
points

unstable

/”P:Tﬂ3

%

Fig. 3 Phase space plot in (J,y) coordinates of a third-

integer resonance (adapted from Reference 3).

We remember from Hamilton's Equations that:

a3 _ _ BH _ 3.53/2 gin3y (83)
ds o

de _ 8H _ 5 , 3 51/2 053¢ . (84)
ds J 2

when both these expressions are zero a particle will stagnate in phase

space lying on a "fixed point". For this to be the case Eq. 83 demands:

sin3e = 0 , (85)
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so that dJ/ds = O. Then we can write cos3¢ = %1 in Eq. 84 and ask how this
can be zero. Above resonance, the sign of & is positive and provided e is

positive d¢/ds can only be zero if:
cos3p = -1 . (86)
These conditions on ¢ define three fixed points at
¢ = w/3, 3v/3 and 5w/3 . (87)
From Eq. 84 we can also find their amplitude:

Jsp = (28/3e)2 . (88)

Inside this amplitude the triangular trajectory becomes less and less
distorted and more circular as one approaches J = O. Outside, the trajecto-

ries diverge in unbounded motion towards infinite amplitude.

The value of Q in Eg. 33 is the unperturbed Q for zero amplitude parti-
cles which corresponds to the centre of the diagram. The betatron wave number
increases with J and becomes exactly one third integer at the fixed points.

This difference in Q
5 =Q - (m/3) (89)

is just the stopband width for a particle of amplitude J. Any particle with
an unperturbed Q closer to the third integer than this will be already
unstable if its amplitude is J. Note that if we tune the Q closer to m/3 or
increase the strength of e the stable triangle where motion is bounded will

shrink and expell particles. This is the principle of third-integer ejection.

!

J

Fig. 4 The variation of Q as a function of amplitude

close to a third-integer resonance.
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10. E EFFEC N OCTUP

This section is not merely a repetition of the previous one for a dif-
ferent multipole. An octupole leads to an extra term in the invariant Hamil-
tonian which corresponds to a nonlinear variation of frequency with ampli-
tude. This is characteristic of "even" multipoles and defines quite a diffe-
rent topology of phase space.

First we must write down the Hamiltonian in "physical" coordinates:

p2 1 1 03By,
H=—+ — k(s)x2 + — ——= x4+ | (90)
2 2 4! (Bp) 0x3
where k(s) is defined in Eq. 18.
After transforming to action-angle coordinates:
2J8 4/2
Hy = 20 5 LIB)TT L) oauy (91)
R 4! (Bp)
where
03B
B(3) - 3z (92)
ox x=0
zZ=
Adaln we expand
cos4y = 1 cos4yp + 4 cos22¢p + — 4! . (93)
24 [(4/2)!]2

The first term in Eq. 93 will resonate at quarter integer Q values, the
second at half-integer values and the third adds a Ugg term to the Fourier
analysis of the perturbation. It is this that gives the amplitude variation
of Q.

We ignore the half integer term for the purpose of this discussion, but
we are interested in the Ugp term. This was missing in the case of the third

(and all odd) order resonances. Equation 71, the general form of the Hamil-

tonian for a resonance
H = (Q - %)J + RUgo(J) + RUpy cosne , (94)

may be differentiated to find an average shift in tune:



day OH m\ R3U,,(J)
o-2) e (55

dJ

For the fourth-integer case we find AQnp , the perturbed second term, is
protortional to J:

4! R . 9B g(3)

(96)
24[(4/2)!]2 3! Be

AQONL =

and for other even orders of n we can find this nonlinear time shift Qj, by
differentiating:

2uwR

2
Ugp = —I%/2nt 1 gn/2p(n-1gs . (97)

20[(n/2)!1% =R

11. -SPAC T P EQUENCY VARIATION

The trajectories discussed for the third-integer case had no term equi-
valent to RUgg(J) in Egq. 14. Let us explore the topology of phase space
trajectories with a generalised invariant Hamiltonian of the same form as
Eq. 82 but including the nonlinear shift a«(J):

H=58J + a(J) + eJ0/2 cosmp . (98)
We remember that the perturbed Q is:

o= _ 54 a@ +
37

1=}

eJ(n/2)-1 cosme . (99)

The first two terms cancel on average when J has a resonant value Jr defined
by the condition:

a'(Jy) = -6 . (100)

If we look at small changes in J about J, by a second differentiation we
find:

(3 -3,) =- 3 E: J](:n/Z)‘1 cosmyp . (101)
o

We now have stable and unstable fixed points at cosmp = -1 and +1 re-

spectively and separated in J by:
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BE ;(n/2)-1 (102)

o

The existence of stable fixed points in the real plane is new and is
only the case for even-order resonances. We find that they are the centres of
an archipelago of stable islands. Trajectories circulate around these points
within the islands. The unstable fixed points are at the junction of the is-
lands and the diagram is identical to a series of RF buckets plotted in polar

coordinates with a harmonic number equal to m.

The width of these islands may be calculated and is found to be:

J n/2
ATy = 2 f_f_u)____ : (103)
a

where J, is that of an unstable fixed point.

T

LTSS SR
"0 g s oot ™

Fig. § The effect of an octupole near a fourth-order

resonance (adapted from Reference 7).

Motion will remain contained within the islands unless there is some way
in which particles may "leak" out. One mechanism which may cause leakage is
the presence of another archipelago which overlaps. This is said to cause
chaotic behaviour. The next set of islands of comparable order will corre-
spond to a change of Q of the order of 1/n where n is the order of the reso-
nance. Since a" controls 38Q/dJ the spacing in phase space is:

AJS=1—7

1 (104)
x n
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We can expect these archipelagos to overlap and chaos to ensue when:

AJy = AJg (105)

qegn > L .1 (106)

nz u"

-

This is the Chirikov limit and normally does not happen in any machine
built with reasonable care. Unfortunately, even in a clean machine,synchro-
tron motion or magnet ripple can produce sidebands to the main resonance and
increases the number of resonance lines each of which produces its own set of
islands. The chaotic condition is much easier to reach as phase space becomes

much more crowded.

12. ITUD TH O OSSING

So far we have described the dynamics of a machine in which neither the
magnetic field nor the momentum of the particles change with time. Many of
the less welcome effects of nonlinear fields only become apparent when either
the magnetic field changes because of ripple in the power supply or when the
particle’s momentum changes sinusoidally as it executes synchrotron oscilla-
tions in an RF bucket. It is a relatively common experience to find that an
injected beam survives until the accelerating cavities are switched on and
then is extracted by a nonlinear resonance. The explanation usually given is
that oscillations in radial position together with the chromatic properties

of the lattice cause the particle to cross and recross the resonance.

One way to see what happens in the time domain when a crossing occurs is

derived by Guignards) . We will not attempt to give his derivation here but
only his result. Suppose We cross a resonance (order, m) at a speed of AQ4

per turn. The equation of growth is:

X
df1=AQe - 1/2 ' (o7
xn (n]|AQ¢|)

(0]

where:

n = order of the resonance,
AQe = half width of the resonance.

On integration this gives (for one crossing):
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n-2 2
(1 N fﬂ) - ____192_77; _ (108)
x (n|aQ¢])

One may go on and calculate what happens if the time is modulated due to
synchrotron oscillations:

Q = Qo + Q sin(Qg Qt) , (109)

where Q is the revolution frequency.

However, it is more direct at this point to move into the frequency
domain and analyse synchrobetatron resonances.
13. ROTRON SON.

It is a fact well known to electron accelerator physicists that each
nonlinear resonance has a series of satellite lines, parallel to it and
spaced by Qg/n on either side of the resonance, where Qg is the synchrotron

wave number or number of synchrotron oscillations per turn.

If we return to the Hamiltonian for a nonlinear resonance we find the

perturbation term is always proportional to:
cos(ny - m8) , (110)
where:

dy/de
L

I
O

fQ das.

Now if Q is modulated by synchrotron motion:
Q = Qo + O sinQge (111)

then

-

b = Vo - L cosQg8 , (112)
Qs

and the perturbation term in the Hamiltonian will change:
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(&)
cosmp » cos | npg - | — ) cosQg8
[ Qs

~

nQ
= E JK (——) cos[nypg + kQSB]
Qs

K

(113)

Each value of k corresponds to a different satellite resonance line. The
resonant condition becomes:

k
+—9—s-, k=021, 2, 3, ... (114)
n

O
1
518

The strength of each line is determined by:
Jk(nd/Qs) - (115)

Figure 6 shows how the strength will vary with the order k = nAQ/Qg
where k is the distance from the resonance in units of Qg/n and with the
depth of modulation né/Qs expressed in the same units. In general the effect
will be worst when Aé = Qg, 2Qg, 3Qs, etc. and will drop to 30% when either
AQ orx Aé becomes larger than 10Qg/n. The suffix v in the plot is just k.

4y (x)
w
o
x
-1 " 8
nAQ 5 ". .w -
QS %
) S
% EEX ;
6 VAVC)
- \ad
8

zo 2 e 65 10 2 s 1z 1 2 NI —>

J,(x) against the plane v, x

Fig. 6 The variation of the Bessel function with distance
from a resonance and with depth of modulation (with
acknowledgement to Jahnke, Emde and Losch, Tables
of Higher Functions, pub. B.G. Teubner, Stuttgart).
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This is nevertheless a rather considerable extension of the influence of
a single nonlinear resonance. In the worst case, when the depth of modu-
lation is about 10Qg. The single line is split into about ten other lines of
comparable strength.

Each satellite line generates its own set of islands in phase space, so
that spacing can be reduced by an order of magnitude. Each resonance is
narrower by Jk(né/Qs) but as Fig. 6 shows this is a factor of the order of
1/3. The consequence is that the Chirikov threshold is reduced by a factor of

3 or so.

14, F (0] FECTIONS

We are at the end of a long road and in the last few miles have aban-
doned some of the luggage containing the rigour of mathematics to speed to
our goal. Our conclusion is not to present a neat analytic expression into
which one may plug field imperfections and obtain beam lifetime but to out-
line a method to arrive at this result. What is offered is a means to bypass
the perhaps prohibitively expensive computer simulations needed to prove
stability.

Previous attempts to predict lifetime on the basis of nonlinear field
content have often foundered by including neither the concept of overlapping
islands nor the catalytic effect of ripple or synchrotron motion. When both
of these ingredients are included it turns out that the nonlinear detuning,
a, plays a crucial role in determining machine performance. This detuning may
be due to effects other than the nonlinearity studied like beam-beam or ion-

beam effects.
The scenario then is as follows:

i) Choose an order of resonance too high to be avoided by tuning Q.

ii) Calculate the nonlinear detuning due to ALL forms of non-
linearities.

iii) Invoke Qg to find the spacing and strength of the resonance lines.

iv) Calculate the Chirikov limit, and if it is exceeded go on to calcu-
late diffusion rates.

v) Calculate the growth per crossing.

vi) Assume crossings are uncorrelated because of Qs.

vii) Sum the growth rate in random walk fashion to get a diffusion rate.

If this method proves to be effective one would expect a lifetime of
24 hours for a beam-beam effect in the CERN SppS storage ring7) , ten minutes
for ion-induced resonances in the CERN Antiproton Accumulator (Ref. 8), and

perhaps only a few tens of seconds for a large ring with inadequate power
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9)

supply filtering The experience found in the Refs. 7 to 9 suggests this

may not be far from the truth.

Those who are already expert in the field may scoff at an attempt to
describe beam diffusion ignoring the second transverse degree of freedom
which changes the topology of the problem. Nevertheless, the numbers seem to
fit and anyone with ambitions to include both transverse planes will find the

next Section contains the prescription for this.

15. E (o WO D NSIO SV OTION

The linear motion in one transverse degree of freedom is a circle in
(J1,91) space. The original Hamiltonian only included terms proportional to
p2 and to x2 coming from the transverse distribution of Ag for a multipole
(Eq. 10) remembering that m = 2 for a quadrupole and a normal orientation

gives only the imaginary terms. We find:
Px 1 x2 Pz z
H=—+<——k——+2—+k§—. (116)

We may transform these coordinates into action angle coordinates and
remove the s dependence of H, Jx and J; just as in the one dimensional case.
In the case of one degree of freedom, plus s the azimuth, the particle was
confined to a torus. Slicing the torus at any azimuth gave a circle. With two
degrees of freedom the "slice" will produce a four dimensional surface which
becomes a circle when projected on either (Jx,Yx) plane or (Jz,Yz). Either Jy
or J; is a horizontal plane when plotted against (Yx,¥z) in a "hill and dale*

fashion.
Now we move on to include other multipoles. Equation 10 tells us we

should include in the Hamiltonian all the terms in the homogeneous polynomial

expansion of:
(x + iz)n | (117)
We should select only real terms if the 2n poled magnet is in normal
orientation and only imaginary terms if the magnet is skew. Thus a normal
sextupole will give two terms:

x3 - 3xz2 (118)

while a skew sextupole will give:
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3x2z - z3 . (119)

Now we can apply all the tricks of perturbation theory to be found in
Sections 5 to 7. We simply must write two element vectors for Q, ¥, J and n
taking dot products to form terms like n-¥- One element is for the x plane,

the other for the z plane.

Wwhen we come to Fourier analysis there will be two indices, ni for the
phase angle Y4 and n; for Y, . The denominator of Eq. 66 which defines a
resonant condition becomes:

niQx + nzQz - m =0 . (120)
The resonances determined by this condition are the familiar mesh of

lines in the working diagram (Fig. 7). If m{ and m2 have the same sign they

are sum resonances and if they are different, they are difference resonances.
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Fig. 7 Typical working diagram with sum and difference

resonances to third order (Ref. 3).

The Hamiltonian, truncated to include just the resonant term (Eq. 67)

will become:
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Hy = Ho(J3) + Rug, gel(P1¥xtnz¥z-me) (121)

Defining:
nipy = ny1¥x + na¥; - mo (122)

we can freeze the motion with a generating function reminiscent of Eq. 68 but
with an extra term.

F2(¥,J4,8) = (n-¥ - m8)Jg,x + Y,J4,7 - . (123)
We now find a new Hamiltonian:
H= (n.Q - m)Jx + Q;J; + RUgg(J) + RU-  cosngy . (124)

We also find on making the transformation from (J3,¥3) to (J4,p) that:

$y = ¥y (125)
Jg,x = n1Jg,x (126)
J3,z = n2dg,z + Jg,z - (127)

The invariants of the motion whose conjugates are absent from the Hamil-
tonian are:

H, = constant (128)

J4z = J3z - (n2/nq)J3zx . (129)

Only opposite signs of n{ and n; will ensure stability. Thus difference
resonances are stable but can couple the two planes while sum resonances are
unstable.

The motion is difficult to plot or imagine. The exchange of J components
ensures that particle simulation plotted on a single phase plane will not
have a continuous path but appear as a halo of dots as J breathes. We no

3) has suggested

longer see undulations around a closed circle. However, Ruth
that if one plots either Jx or J, as a function of Y4 and ¥, to form a moun-
tain range plot, one reveals the modes of distortion characteristic of the

indices m¢y and m; (see Fig. 8).
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Fig. 8 A plot showing an invariant surface (H = constant) as a function

of phase variables in both transverse planes (Ref. 3).

16. HREE DIMEN ETIC F

At the outset I warned that some of the approximations made to the
Hamiltonian in Section 2 might need to be reconsidered for small rings where

the magnets are short. In this Section we discuss why this is so.

We are all taught very early in our initiation to magnets and accelera-

tors that the field measured by a long coil passing right through the magnet

jﬁ Bdf

will satisfy Laplace's equation in two dimensions and hence the particle will
see an integral as if there was merely an Ag component. One would not
therefore expect any terms in the Hamiltonian other than those of Eq. 10 even

the magnet was short and consisted almost entirely of end field.

Two things spoil this simple picture. The first is that the suffix, s,
indicates a direction along the particle trajectory and not parallel to the
axis of the multipole field. Strictly

wm>

Ps = P (1 + g) (130)



AS=K-§,<1 +§>. (131)

If the particles trajectory is expected to follow a curved path, as in a
bending magnet, we must somehow obtain an Ag (also Ax, Az ) expression from

the purely axial Aj.

Secondly, the particle may well be focused (or defocused) as it passes
through the end field of a magnet, so that the betatron amplitude has a
chance to change. If the magnet has an aperture which is comparable to the
length we should really examine A, at each point in the fringe field in
computing the Fourier coefficients driving resonances. An example where this
turns out to be important is the end field of a quadrupole. The Az component
must have the symmetry of a quadrupole in polar coordinates, cos28, but it
can have a radial variation normally associated with an octupole in the two

dimension case. Locally

Ag = f(z)r* cos28 . (132)

f(z) reverses sign in the fringe field but if beta has changed in the mean-
time this would contribute to the Fourier term driving a four order

resonance.

I will not attempt a comprehensive treatment of these three-dimensional
effects here but merely warn that they should not be forgotten in the design

of small rings of large acceptance.

17. NC ONS

We have covered all the basic nonlinear theory related to single-parti-
cle behaviour and in so doing identified a link between the specification of
magnetic field quality and beam lifetime. There are also nonlinear forces on
the beam due to collisions with an oncoming “target beam" in a collider or,
if the particles of the beam are negative, with the space charge field of the
neutralizing ion cloud. The potentials due to these effects are usually
richer in high-order multipole fields at the beanm radius. However, I shall
now leave other authors to take up the baton in this relay race from alter-
nating gradient focusing toChirikov diffusion.



- 74 -

FERENCES

1.

10.

E.J.N. Wilson, Non-Linearities and Resonances, Proc. of CERN Accelerator
School on General Accelerator Physics, Gif-sur-Yvette, CERN 85-19, p. 96
(1985).

J.S. Bell, Hamiltonian Dynamics, Proc. of this School.

R.D. Ruth, Non-Linear Dynamics in Circular Accelerators and Storage
Rings, Proc. of the 5th US Summer School High Energy Particle Accele-
rators, SLAC (1985).

E.D. Courant, R.D. Ruth and W.T. Weng, Stability in Dynamical Systems I,
SLAC-PUB-3415.

E.D. Courant and Snyder, Theory of the Alternating-Gradient Synchrotron,
Ann. Phys. 3 (1958).

G. Guignard, Effets des champs magnétiques perturbateurs d'un synchro-
tron, CERN 70-24, Chapter 4 (1970).

L.R. Evans, The Beam-Beam Interaction, Proc. of CERN Accelerator School
on Antiprotons for Colliding Beam Facilities, Geneva, CERN 84-15, p. 319
(1984).

E. Jones, F. Pedersen, A. Poncet, S. van der Meer and E.J.N. Wilson,
Transverse Instabilities due to Beam-Trapped Ions and Charged Matter in
the CERN Antiproton Accumulator, Proc. Particle Accel. Conf., Vancouver
(1985).

E.D. Courant, A Computer Study of Widening of Stopbands by Ripple, CERN
Lab.II-DI-PA/Int. 74-14 (1974).

R. Stiening and E.J.N. Wilson, Transverse Single Particle Instability in
the NAL 500 GeV Accelerator, Nucl. Instrum. Methods, Vol. 121 (1974).



- 75 -

CHROMATIC EFFECTS AND THEIR FIRST-ORDER CORRECTION

Bryan W. Montague
CERN, Geneva, Switzerland

ABSTRACT

The momentum dependence of accelerator properties has become increa-
singly important with improved performance. With the advent of high-
Juminosity storage rings the basic concept of chromaticity has had to
be generalised to take into account the local chromatic perturbations
of the orbit functions. The first-order theory described here enables
lattice parameters to be chosen so as to facilitate chromatic
correction, and also provides insight into the origin of higher-order
effects.

1.  INTRODUCTION

Chromatic effects in accelerators arise because the focal properties of magnetic lens
systems depend on the particle momentum, in close analogy with the corresponding effects in
classical optics. In the early days of A.G. synchrotrons chromaticity, i.e. the variation
of betatron tune Q with momentum, was not a matter of serious concern. However, the
situation changed with the increase in intensity of accelerated beams, resulting in the
appearance of collective instabilities, in particular the head-tail effect, and making
necessary the correction of the natural lattice chromaticity. Considerable refinement of
correction methods was introduced in the CERN ISR, in order to accommodate high-intensity
proton stacks of large momentum spread within the limited space of the tune diagram free of
lTow-order nonlinear resonances.

Up to this stage chromaticity had been considered as a single number, the average of
chromatic effects and their corrections around the circumference of a machine. With the
advent of high-luminosity electron-positron storage rings using low-8 insertions, it became
evident that the concept of global chromaticity was inadequate to describe the true
situation. In contrast to a regular lattice, where the chromatic effects are reasonably
well distributed, the strong quadrupoles of a low-B section generate large local chromatic
perturbations of the betatron motion, as well as contributing to the overall chromaticity.
Since it is not practicable to correct these chromatic effects close to their source, one
js led to study chromatic effects in terms of first-order perturbation of lattice functions
for off-momentum particles. First formulated by Zyngierl), this approach as elaborated
by Montaguez) is used as the basis for this lecture.

In Section 2 we discuss the basic principles of chromaticity correction and
demonstrate the need for a more general approach in the presence of strong localised
sources of chromatic errors. Section 3 describes a first-order chromatic perturbation
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formalism which yields a clear physical picture of the effects in one betatron phase
plane. In Section 4 this is extended to two dimensions and used to optimise linear
parameters of the machine lattice for correcting chromatic errors. A simple concentrated
correction scheme is shown to be impracticable and leads to a discussion of the criteria
for smooth distributed correction.

2.  BASIC IDEAS

The definition of chromaticity Q' used here is :

¢ == . (1)

where § = Ap/pg is the relative momentum deviation from the nominal pg. A definition
sometimes found in the literature is :

dq _ Q'
d

_Po !
£= Qo dp Qg

The dispersion, i.e. the variation x. of the closed-orbit position with momentum §,
is commonly defined in two ways, viz. :

BXQ
DX = 36 (2)
X
or Ny = GJ- s

and to lowest order Dy ~ n. The coordinate x is taken to be the horizontal transverse
direction, where the dispersion is an intrinsic machine property; vertical dispersion,
normally arising only from errors, may be similarly defined with the appropriate
coordinate. In earlier times the symbol ap was used for the dispersion; it fell out of
use due to the inconvenience of adding subscripts.

In classical optics, chromatic aberrations of lens systems can be corrected, at least
partially, by using multiple elements of glasses with various refractive indices.
Unfortunately there is no such equivalent in charged-particle focusing systems produced by
Laplacian fields; magnetic quadrupoles have a fixed variation of focusing strength with
momentum. From the definition of the quadrupole strength parameter :

- 8238
K= p 3x

follows immediately the variation of K with momentum :
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8K _Bp_ g
Ko Po ) (3)

Using the well-known formu1a3) for the first-order tune variation AQ due to gradient
perturbations AK(s) :

1 2nR
AQ = o4 [ 8(s) &K(s) ds
0
we obtain with Eq. (1) and (3) :
l 21TR
Q'= - 37 | B(s) Ko(s) ds (4)
0

where B(s) is the betatron envelope function. This gives quite generally the first-order
global chromaticity of an uncorrected machine.

2.1 FODO lattice

As an example we take a regular machine consisting of N periods of FODO lattice, each
of length L and betatron phase advance u. In thin-lens approximation, which is usually
quite accurate, it is straightforward to calculate the transfer matrix over one period
between the mid-points of the quadrupoles, and to equate corresponding elements to those of
the Courant and Snyder matrix3) between symmetry planes :

cosu Bsinu

M= --% sinu cosu

Then with quadrupole length ¢4 < L, one finds :

Ko2q =-§sin4§ (5)
L
Bmax = (6)
X 2 tan %-(l-sin g-)
L
Bmin = M (7)

2 tan-% (1+sin 5 )

where Bpaxs Bmin correspond to the matrices taken from F to F and D to D quadrupoles
respectively.
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Now in thin-lens approximation :
(KoJF = -[Kolp =Ko >0,

and, neglecting the weak focusing effect of dipole bending magnets, the integral in Eq. (4)
can be replaced by a sum over N identical periods, since N = 27R/L. Hence :

} %;-% (Bmax[KolF + Bmin[Kolp) %q

"

Ql

N
27 (Bmax - Bmin) Kotq -

Using Eqs.(5), (6) and (7), together with Nu = 2nQ, we have :

We see that for small phase advance u » 0, Q' > -Q, and for a typical value u = /2, we
have Q' = -4Q/m, not very much different. Large, high-energy accelerators and storage rings
necessarily have large betatron tunes, in order to keep the aperture requirements within
acceptable limits. A similar situation occurs in dedicated synchrotron-light sources, where
the particularly strong focusing required to obtain low beam emittance and high brightness
results in relatively large values of Q. In both types of machine the natural chromaticity
is inevitably large and requires careful correction.

2.2 Local chromaticity correction

The only practical method of correcting chromatic effects makes use firstly of the
variation in closed-orbit position with momentum, given by the dispersion Dy in Eq. (2),
and secondly of the property of a sextupole lens that particles traversing off-axis
experience a quadrupole gradient proportional to the off-axis displacement. The combination
of these features results in an effective quadrupole gradient which, in principie at least,
can have an arbitrary first-order momentum dependence, and can therefore be used to
compensate the natural chromatic properties of the quadrupoles.

From the definition of the sextupole gradient parameter

2
K =28
po 9Xx

one sees that the equivalent quadrupole strength for particies with momentum error & is :

AK = Dy Ko' &
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which, by analogy with Eqs.(3) and (4), yields the chromaticity integral

Q' = -+ | 8(s) Wols) - Dx(s) Ko'(s)} ds . (8)

which results in the integrand of Eq. (8) vanishing identically, leading to Q' = 0.
Strictly speaking this implies that the sextupole fields must be coincident with the
quadrupoles, which is not normally very convenient. In practice a very good approximation
to this situation is obtained by placing a sextupole close to each quadrupole.

2.3 Low-B insertions

In order to obtain high luminosity in colliding-beam storage rings it is necessary to
focus the beams down to very small cross sections, which requires very strong quadrupoles in
the vicinity of the collision point. On the other hand, the quadrupoles cannot be too
close, since space is required for the detector. The low value of g* at the collision
point, together with the distance to the quadrupoles, results in a large value of B at the
quadrupoles. There is thus a large contribution to the integral of Eq. (8) arising from
large values of both g and Kp.

The problem is compounded by the need to have Dy = 0 in this region, in order both
to maintain a high Tluminosity and to avoid an important source of synchro-betatron
resonances. It follows that Tlocal correction is not possible, and the chromatic
contribution from the low-g interaction regions can only be corrected in the main arcs of
the machine lattice, where the dispersion is non-vanishing. It is then evident from Eq. (8)
that, to make Q' = 0, the value of Kg'(s) has to be increased above that necessary for
local correction of the lattice quadrupoles.

It is now easy to see that we have a machine in which the focusing strength is almost
everywhere momentum-dependent, despite having Q' = 0. This results in a chromatic mismatch
of the betatron envelope functions for off-momentum particles, extending in general all
around the circumference. In large, high-luminosity storage rings this mismatch can be
large and leads to a number of undesirable side effects, in particular to higher-order
variations of betatron tune with momentum and reduction of the effective machine aperture
for stable orbits. Considerable insight into these effects can be obtained from first-order
calculation of the chromatic perturbations.
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3. CHROMATIC PERTURBATION EQUATIONS

The motion of an ensemble of particles with a momentum deviation & = Ap/p may be
compared with that of an ensemble having zero momentum error by assigning two distinct sets
of Twiss parameters B, a, and phase advance ¢ :

8(6)’ a2
8(0)9 @)

"
Q
—
(=)
~

-

$2 = ¢(6)’
¢1 = ¢(0),

B2
B1

n
Q
—
(e}
~
-

in each plane. The relation between the two sets will be determined later by boundary or
symmetry conditions.

Considering only one plane for the moment we define :

AB = By - B, B = VBB
Ap = ¢ - b1, 0 = ($2%4,)/2 (9)
and use these to define the chromatic variables
B2 - By A
B=—F = s (10
/8.8, B )
- B
A = a2B1 0182 . (11)

o
Additionally we can define the difference in the local focusing gradient parameter :
AK = Kp-Ky = K(8)-K(0). (12)
A1l the above parameters are, of course, functions of the position s in the machine.

From the definitions above and using the well-known relations :

do _ 1 d8 _ da _ . (1+a®)
ds = B> ds - "o and g = KB B i
we obtain directly :
A B
G =g (13)

and, after a little calculation :



B
Bl (14)
g—é‘—= MK+28%§L . (15)
In an achromatic region, where AK = 0, it follows from Eqs. (14) and (15) that :
d_ (a2 4+ 82) =0 (16)
ds N

and that (A2+B2) is therefore invariant.

The equations so far are exact and do not involve any assumptions about the variation
with & of the quantities defined. This makes it possible, by tracking the chromatic
functions through a machine for various momentum errors 6§, to estimate the importance of
higher-order variations in 62, 63, etc. For further discussion it is convenient, however,
to introduce some approximations for small perturbations. If we define :

Ao = 0g - aj

we obtain from Eq. (11) :

B1 A AB
A=y/82-Aa-aIE§=‘Aa-aB—' (17)

if ﬁg and %ﬁ are small. It is worth noting for future reference that, for A8 = 0, the

approximation in Eq. (17) becomes exact. If, as a further approximation, we take*)
(By + B2)/2 = VB1By it is easy to show that :

d s -
and that :
dA
@ " g2aK + 2B . (19)

If AK = 0, Eq. (19) becomes exact. Finally, without approximation, Eq. (14) becomes :

ala
© |

= -2A . (20)

It will become apparent later that ¢ is a more suitable independent variable than s in the
present context.

* The arithmetic and geometric means differ by only 2% for Ag/8 = 0.4
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From Eqs. (18) and (19) we can write :

%; (200 + A) ~ 8%AK (21)

and in achromatic region, where AK = 0, 2A¢ + A is invariant in the above approximation.

Some of the above considerations were discussed by Autin and Verdier”) in a more
general context of 1linear perturbation theory. In a specific application to chromatic
effects, Zyngierl) obtained the same perturbation equations by a somewhat different
method, using a complex number representation.

Equations (19) and (20) can be derived from the Hamiltonian :
H(B,A,5) = A% + B2 + 8%(¢) oK(s) B (22)

with A and B the canonical position and momentum coordinates respectively. In an achromatic
region AK = 0, the Hamiltonian equals A%2 + B2 and is invariant as previously noted. The two
first-order equations (19) and (20) yield :

el ian=0 (23)

with an identical equation for B. Thus in an achromatic region A and B oscillate in
quadrature at twice betatron frequency. They can be considered as representing a chromatic
mismatch of the off-momentum betatron envelope function with respect to that of nominal
momentum.

The chromatic variables have so far been defined with respect to an arbitrary momentum
error 6. It is convenient to normalise these variables to § by defining formally :

g - Lim [:l . B(8) - 510!']
§+0 § /8(5) 8(0)\

and similarly for A, &K, A¢. The invariant (for AK = 0)
1
W=1 (A% +82) /2 (24)

is dimensionless, and in the normalised form is an absolute measure of the strength of a
linear chromatic perturbation. The factor 1/, is a convention (from Ref. 1) arising from
the oscillation at twice betatron frequency. It is omitted by some authors. If W2 s
expressed in full, using the definitions (10) and (11) it is seen to be formally analogous
to the Courant and Snyder quadratic form3).
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3.1 Simple examples

It is evident that in an idealised machine which is everywhere achromatic W is
identically zero. To illustrate the situation in a real machine with Tow-8 insertions it is
instructive to consider two simple models in thin lens appoximation.

For a regular FODO lattice we use Egs. (3), (6) and (7), and by logarithmic
differentiation obtain the normalised chromatic variations :

- u
1 éﬁ o1 tan 2
§ g cos ;
(25)

1

1 AE 1 tan 5 )
8 ¥ cos X
2

Both o and Ao vanish because of symmetry. For u = m/3 we have :

<

1 -1 1 -2
8 3 8 3

and

m)lg
»
WL >

with values of W = /g, 5/6 respectively. Thus a single lattice period uncorrected for
chromaticity generates a value of W of order unity. A simple two-family sextupole
arrangement can reduce this to zero so that the lattice contribution to W vanishes to first
order.

As a simple model of a low-8 insertion we consider a single thin focusing lens

distance s from the interaction point, where the envelope function B* is assumed not to
change with momentum. The value of o just before the lens is :

In a typical low-g insertion the first quadrupole changes a by about twice this amount and
the value after the lens is :

a4y = 0 - Bka

where 8 = gx(1 + 52/8*2) is the value at the lens and k =-Ko2q < 0 for a focusing
lens. Since we assume B* fixed the change in a4 due to a momentum error § is :

Moy = - Bok = - Bk 2K = ks,



whence

Aa+=(a_-a+)6=-%§:-6.

From (17), since B* and 8 do not change, normalising by § gives :

Bt 25
A=— = R
and the contribution to W is :
s
w____ .

For a LEP physics insertion, s/g* = 50 vertically. This illustrates how strong is the local
chromatic error introduced by the first Tow-8 quadrupole compared to that of a normal
Jattice, and justifies considering the latter as relatively achromatic in the subsequent
sections of this text. The exact value of W in the vertical plane is somewhat reduced in
practice since a4 is less than (-a.).

4. TWO DIMENSIONS

The methods of Section 3 can readily be extended to treat the vertical and horizontal
planes together, in order to take account of the fact that sextupoles act simultaneously in
both planes. For this purpose we introduce the two-dimensional normalised "invariant" :

1 2 2 2
W=3 B2 + BR + AZ + AR , (26)

- where the normalised By, Bp, Ay, Ap, are defined exactly as before, independently
in the two planes. The value of W is evidently a measure of the overall chromatic error in
both planes.

At any position where the dispersion Dy does not vanish, a sextupole acts as a
quadrupole for off-momentum particles and therefore introduces a AK. It is evident from
Eqs. (14), (15), (18) and (19) that AK changes A but not B, and in both planes. The changes
in A and Ay for & = 1 due to a short sextupole of strength K'# are given by :

"

ah - Bh K'2 Dx

av=BVK'2DX=-#-ah

(27)

By
Bh
value of W which can be minimised with respect to ap. This "optimum" W :

Replacing Ap by (Ap + ap) and Ay by (A, - ap) in Eq. (26), we obtain a new
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A A 2 1
(ByAn *+ BhAy) ] /2 (28)

_1
o "2 [BV MEUIRNTY IS

is the lowest that can be obtained for given B and A with a single sextupole, or with a
single family of sextupoles whose members are spaced by integer multiples of = in vertical
and horizontal betatron phase. The corresponding sextupole strength required is :

_ BhAn - BvAy

i Dx(Bﬁ + 33) (29)

(K'2)op

4.1 Choice of linear lattice parameters

Sextupoles are usually located close to the F and D quadrupoles of a FODO lattice in
order to decouple the effects in the two planes as far as possible. We adopt this
constraint, which fixes By, Bps and seek conditions on B, A in the two planes to make

Wop in Eq. (28) a minimum.

The examples of Section 3.1 demonstrate that it is legitimate to consider the major
chromatic perturbation as originating in the low-g quadrupoles and propagating into the
main lattice almost unchanged except in phase, as shown schematically in Fig. 1. It follows
that, in each plane, B and A at any given point in the main lattice are just functions of
the phase advance in the respective planes from the low-8 quadrupoles to that point.
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Bripn) . Apbpn)

Fig. 1 Variation of chromatic perturbation W and dispersion Dy near the interaction
region
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We consider Wop at the first sextupole in the reguiar lattice and write Eq. (28) in
terms of By(éy)s Bn(én)s Ay(éy) and Ap(éy). A minimum of Wop with respect
to both phase advances ¢y, ¢ occurs for :

B 2y = 8 2y =

2 2
provided that both %;5 (N%p) and 2;5-(w20p) are positive definite.
v h

After some algebra one finds a unique solution corresponding to :

With these conditions Eq. (28) reduces to :
27 1
1 (BvAn * BnAy) /2
(Mopdmin =5 + | ————~— 31
op)min =% (82 + 82) (31)

and the required value of K'2 is still given by Eq. (29), either for a single sextupole or
for the total strength of a single "coherent" family as before.

The condition given by Eq. (30) is illustrated in the phase-plane diagram of Fig. 2.
For simplicity the chromatic mismatches for vertical and horizontal planes are superposed
on the same normalised coordinate system (n,n') though the normalisation is necessarily
different for the two planes. The vanishing of B = AB/B in the two planes corresponds to
the common vertical tangent and makes A = Aa. The condition that A, and Ap have
opposite signs follows from the fact that, for an off-momentum particle, a sextupole
focuses in one plane and defocuses in the other, as indicated by the arrows.

In Eq. (31) (Wop)min cannot be made to vanish with a single sextupole family,
since it is determined by parameters of the lattice (By,Bp) and of the low-B insertion
(Ay,An) whose values are governed by other considerations. However, the introduction of
a second family of sextupoles, suitably phased with respect to the first, enables W to be
reduced to zero in first order.

In general, four chromatic variables describe the first-order behaviour of
off-momentum particles, and four parameters are therefore required in principle in order to
make these variables vanish. Normally this would require four independent sextupole
families but, by choosing the linear phase advances in the two planes appropriately, we
have introduced a degeneracy, which makes it possible to correct the first-order effects
arising from the 1low-8 quadrupoles with only two families. In addition, of course,
provision must be made for correcting the lattice chromaticity, either by appropriate
adjustments to the K' values or by extra families, which latter may anyway be required for
taking care of high-order effects.
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Fig. 2 Normalized phase-plane diagram for the optimum ¢,
and ¢, at first sextupole.

4.2 Concentrated correction

We can illustrate the principles on which the W-matching strategy of chromaticity
correction is based by considering a simple model.

At an interaction point we impose the initial condition that the chromatic errors
there vanish, i.e. W = 0. The low-8 quadrupole doublet introduces strong chromatic
perturbations in both planes which propagate through the remainder of the straight section,
where the dispersion is zero, into the main arc. The chromatic contribution of this part of
the straight section is small compared with that of the low-B quadrupoles. We now adjust
the parameters of the straight-section lattice, together with the matching into the Tow-8
insertion and the dispersion suppressor, such that the phase advances in the two planes
lead to Eq. (30) being satisfied at the first sextupole in the main arc.

In order to distribute the total required sextupole strength amongst several members
of a family acting coherently, the phase advance u per period of the main lattice must

satisfy :

np = (2m + 1)m; m,n integer. (32)
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For our model we assume a lattice phase advance u = yé and choose the simplest configu-
ration n = 3, m = 0, with two sextupole families of two members each. The phase difference
of = between the two members of each family helps to cancel nonlinear resonance excitation
by the sextupoless). The trajectories of the (B,A) vectors in the vertical and hori-
zontal planes are indicated in Fig. 3(b). The radius of a trajectory is 2W, as seen in
Eq. (24), and the polar angle rotates at twice betatron frequency in this representation.
Each of the sextupoles, whether F or D, contributes to reducing W (in steps) simultaneously
in both planes, and after the fourth sextupole W is brought to zero.

Figure 3(c)illustratesa feature which has so far not been discussed in detail, namely
the behaviour of the accumulated chromaticity A¢, which is correlated with A by
206 +A = constant (Eq. (21) with AK = 0). Like B and A, A¢ oscillates at twice betatron
frequency and is negative everywhere in this region, since the large chromaticity produced
by the low-8 quadrupoles (and the smaller contribution from the straight-section lattice)
have not yet been corrected. We now impose a further constraint over and above those of
Eq. (30), requiring not only that A, and Ap have opposite signs, but also specifying
which one should be negative at a given sextupole. This choice is made from the following
qualitative considerations of a second-order effect.

The local value A¢ of the accumulated chromaticity is a measure of how well the phase
advances imposed to satisfy Eq. (30) are maintained as a function of momentum error. Our
choice of normalised, first-order variables has removed the l1inear dependence on §; conse-
quently the non-vanishing of A¢ implies a variation with §2 or higher order. It is there-
fore desirable to arrange that A¢ be numerically a minimum at the locations of the sextu-
poles. Because of the dominant, first-order constraint that A Ap, < 0, this is not
possible simultaneously in both planes and we therefore impose |A¢| = minimum in the plane
in which a sextupole has the strongest influence, i.e. the plane of Bpax. This is the
more favourable case, depicted in Fig. 3(a), (b) and (c).

Although this simple arrangement illustrates clearly the concepts of W-matching, it un-
fortunately cannot be used in practice. The basic reason is clear from the examples of
Section 3.1; to concentrate the correction of the low-g quadrupoles, chromatically the
equivalent of about 50 lattice periods, into two pairs of elements would require exceedingly
strong sextupoles. Such strong nonlinear elements greatly enhance the excitation of
systematic resonances of third and higher order, leading to orbit instability at quite low
betatron amplitudes, where the phase-separation rule is violated due to the strong
amplitude-dependence of phase advance.

4.3 Distributed correction

It is therefore essential to distribute the sextupole correction amongst many members
of each family, the aim being to find arrangements which minimise the strength of the
strongest sextupoles in the machine. The value of W is then progressively reduced towards
the centre of the main bending arc at which point it should be rather small. The symmetry
of the machine then ensures that W = 0 at the next interaction point, consistent with the
initial condition imposed.
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Fig. 3 Example of W-correction with two pairs of sextupoles; a) configura-
tion and constraints, b) loci of the W-vectors, c) accumulated chroma-
ticities Ady, Adp.
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The phase constraint of Eq. (32) shows that members of the same sextupole family occur
at intervals of n lattice periods. For m = 0O the phase advance u is a simple fraction of =,
e.g. n/4, /3, etc., and in the design of linear lattices there is normally no reason to
choose more exotic values. In fact there are good reasons to avoid configurations with
m > 0 since this leads to larger separation in betatron phase between members of the same
family. The need to correct the low-8 chromaticity in the normal lattice necessarily
implies local over-correction because of the increased values of Ky', which can lead to
excessive accumulation of phase errors for off-momentum particles if adjacent members of a
family are too widely spaced.

These higher-order effects require more powerful methods for systematic study and are
treated by G. Guignard in this course. However, the first-order theory discussed here has
shown itself to be very useful in clarifying the general principles, exposing the
jmportance of basic lattice parameters and indicating the origin of some significant
higher-order phenomena.
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CHROMATICITY: NONLINEAR ABERRATIONS

G. Guignard
CERN, Geneva, Switzerland.

ABSTRACT

For accelerator designers, chromaticity deals with the variations
of optics parameters with momentum deviations = Ap/p. Differen-
tial bending gives rise to the dispersion of the closed orbit while
differential focusing in the quadrupoles is first seen as a change
in the oscillation frequency and amplitude. Sextupoles placed in
the lattice where the dispersion is sufficient, are used to correct
strong, first-order chromatic effects and this paper on chromaticity
discusses this question. Nevertheless, these sextupole fields
introduce nonlinear forces and additional tune variations with the
amplitude. Furthermore, every quadrupole and sextupole of the
structure induces aberrations to all orders in §. These effects are
first described and methods of analysing and possibly minimizing
them are then presented in this second lecture on chromaticity. The
pertubation theory in the canonical variables as a tool for dealing
with the nonlinearities is outlined. In addition, the concept of
dynamic aperture is introduced. Recent investigations aiming at the
development of analytical or semi-analytical means for estimating
dynamic aperture without tracking are mentioned.

1.  INTRODUCTION

This paper discusses the nonlinear aberrations associated with the chromaticity and
the presence of sextupole fields necessary for its correction. Following a qualitative
description of the expected nonlinearities in momentum deviation and in the transverse
coordinates (x,z), one defines variables allowing quantitative estimation of the
subsequent effects (Section 2). The so-called dynamic aperture, frequently debated and
considered as one of the most interesting concepts, is then brought in. Since the most
powerful method of studying it remains single-particle tracking, the computer programs
able to achieve this are briefly reviewed. However, the main object of the present lecture
is to describe the analytical methods which have been investigated in order to deal with
nonlinearities.

The pertubation theory using the Hamiltonian formalism is a very important tool in
this frame. Therefore, the basic principles are recalled for one-dimensional motion and
the use of this theory for minimizing nonlinear aberrations from sextupoles is explained
(Section 3). The generalization to two dimensions and the analysis of resonances as well
as tune shifts are briefly outlined. The recent efforts, made in parallel with the work on
numerical tracking, to develop analytical or semi-analytical tools to find the stability
limit in the presence of nonlinearities are summarized (Section 4). The possible use of
the Hamiltonian pertubation to calculate the distortions of the invariant tori is
explained and the search for approximate solutions by successive linearization of the
equation of motion is described.
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2. DESCRIPTION OF THE NONLINEAR PERTURBATIONS

2.1 Relevant quantities

Two sorts of nonlinearities are present in an accelerator or storage ring : those in
the energy deviation § = Ap/p and those in the transverse amplitudes x and z. When we are
dealing with the minimization of chromatic effects, we are of course directly concerned by
the former, but the latter are also important since they may be generated by the
sextupoles used for chromaticity correction.

Considering the vector W defined in theprevious chapter on chromaticityl) and
describing amplitude effects, it is clear that every quadrupole and sextupole (actual
sextupole magnets or sextupole-field jmperfections) induces local gradient errors AK to
all orders in &. Consequently, the betatron functions are also perturbed to all orders, in
particular the phase advance ¢y. Hence, if the vector W changes by steps in its
angular component when AK # 0 and rotates with twice the phase advance ¢y in achromatic
sections, to first order in &, nonlinearities in & are necessarily present in addition ;
W-amplitude nonlinearities which are usually weak and W-phase nonlinearities,
which are large and follow the spread in phase advance mentioned above. This can be
visualized by tracking the W-vector through a superperiod which is achromatic to
first order, for instance.

Sextupoles are used for compensating the linear chromatic variations discussed in the
previous chapter and field imperfections are present in all magnets. They are responsible
for nonlinear forces in x and z, which induce nonlinear kicks in the betatron motion.
Direct consequences are the excitation of many resonances, the presence of coupling and
possible blow-up of the beam. As is the case for § nonlinearities, all orders in x and z
can be present in general.

There are analytical and numerical mean52a3) to calculate the compensation of
the linear chromatic perturbation. The computer program HARM0N3)is able in addition to
minimize some & non-linearities (e.g. second and third-tune derivatives) and the
excitation of some resonances.

2.2 Diagnosis means

It is important to have values for the quantities characterizing the nonlinear
effects mentioned in Section 2.1, in order to estimate the quality of a compensation
scheme and the future performance of the accelerator. Hence, numerical diagnosis means are
necessary and the ones which are nowadays most frequently used are listed below :

- The program MAD") can track the vector W trough the structure and give
direct information about its spread with §.

- The same program is able to calculate the curve giving the tune as a function of 6.
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This makes it possible to check the accuracy of the linear compensation (Q' = 0) and
to estimate the importance of the quadratic and cubic terms (Fig. 1). Such a curve is
also able to show at which value of § stop-bands or strong resonances are reached.
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Fig. 1 Example of tune variations with momentum
(LEP with Qy = 70.35 and Q, = 78.20, at & = 0)

Some information on the quality of the compensation scheme can be derived by tracking
with TURTLES) through a section of the machine and plotting phase space
distortions. The experimental observation was that background conditions in PEP
experiments were strongly dependent on the sextupole strengths. For the observed
optimum, the tracking over one superperiods) showed that tails do not develop in
the phase space, in contrast with the other configurations. Tracking is done with
10 000 particles, using a rectangular distribution enhancing the importance of the
tails and spreading over 20 and 10 standard deviations of the transverse and
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longitudinal beam dimensions, respectively. For each element, second-order transforms
are used with no truncation in the cross-terms. An example of LEP resu]tss) (600
configuration) is given in Fig. 2.

An interesting way to have an overall description of the nonlinear effects and to
estimate the performance is to look at the dynamic aperture. By definition, the

dynamic aperture dy and the associated acceptance Ay = dzy/sy describe the
betatron amplitudes at which particles can circulate indefinitely as functions of .
It corresponds to the initial transverse amplitude up to which the betatron motion is
stable, meaning it remains bounded. The condition of boundedness must prevail during
a time comparable with either one damping time or many synchrotron periods for
electrons or protons, respectively.

In principle, the stable region is a volume in (Ex, Ez, &) space, where Ey
are the emittances related to the betatron amplitudes and § is the relative amplitude
of the synchrotron oscillations. To simplify the presentation, cuts of the stable
volume are shown graphically. Fig. 3 gives an example of such a cut with
E; = '/,Ex for the LEP design.

To calculate the stability limit, designers of accelerators rely above all on
particle tracking. Recently, analytical or semi-analytical methods have been investi-
gated with the idea to complement the numerical results and to obtain some useful
information about the dynamic aperture. These methods 7~ 10)  apre based
either on the Hamiltonian formalism and the iterative perturbation in canonical
variables or the successive linearization of the equations of motion. These two
techniques will therefore be described in this chapter.

Since particle tracking remains the most powerful method for studying stability,
we will briefly mention here some of the computer programs for that purpose,
reminding the reader that tracking is treated in another chapterll). In practice
tracking amounts to calculating orbits of single particles in external fields for a
few initial conditions, by approximate integration of Hamilton's equations through
individual magnetic elements. Because of the special nature of the problem, one uses
particular integration methods. The simplest method is the kick approximation, which
treats the nonlinearities as infinitesimally thin lenses. It is used for instance in
the programs PATRICIAlz), EVOL13) and RACETRACKlq); as a special feature,
EVOL includes multiple beam-beam collisions and tune modulation, while RACETRACK
deals with orbit distortions. A second method is based on second-order transfer
matrices which are used in the programs TRANSPORTIS), MAD“) and DIMADlG),
the 1last one allowing for tracking with orbit distortions before and after

correction. A third method exploits Lie transformsl7)

for constructing sympletic
transfer maps to high order (3 or 4) in the canonical variablesl7) and has been
applied extensively in the program MARYLIEla), and later in MAD“). An example

of tracking with PATRICIA is given in Fig. 4.
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- Distortions of elliptically cross-sectioned emittance tori allow one to visualize the
effects of nonlinearities and give indirect information about the proximity of the
stability 1imit or the onset of chaotic motion. Methods for the analytical
computation of invariant surfaces in the phase space have been recently studied.
Similarly to the dynamic aperture, these methods are based on the successive
canonical generating functionsa’lo) and the linearization of the equations of
motiong), but also on the first-order distortion functionslg), the solution
of the Hamilton-Jacobi equationzo) and the perturbation series exploiting Lie
operatorSZI).

3. PERTURBATION THEQRY IN THE CANONICAL VARIABLES

The practical problem to face in the correction of the chromaticy with Tlumped
sextupole magnets is to keep small the nonlinearities in § and the effects of the
transverse nonlinear forces on the betatron motion. This section describes a possible
solution to that problem. It consists of analysing the motion with the Hamiltonian
formalism, calculating characteristic quantities and minimizing them with the available
sextupole strengths (program HARMONQ)); these quantities are mainly the excitation
coefficients characterizing broad resonances and their bandwidth, and the stabilizing
coefficients controlling the tune variations with amplitude and momentum deviationzz).
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3.1 Recap of the basic principles

To illustrate the method, let us consider one-dimensional motion with a nonlinear
force, whose equation can be written :

Y+ K(s) y = ap(s) y(m-1) . (3.1)
Using the betatron variables, Eq. (3.1) can be rewritten :
u" + Q%u = Q2 an g(m+2)/2 y(m-1) (3.2)
and the corresponding Hamiltonian is given by :
H= 3 (2 + pd) + 5 02 ag B(M2)/2um (3.3)

In the more convenient action-angle variables I and ¢, H (3.3) takes the form :

1 21
H=Hy +H =Q+0" a8 ( )

m/Z Cosm ¢ (3.4)

where Hy is the unperturbed Hamiltonian giving the well-known invariant curves of the
1inear motion, i.e. circles in the betatron phase space. The perturbation H,, which is a
function of the variable © used instead of s, describes a nonlinear system which is not
always integrable, depending on the function ay. The problem consists of finding
approximate new invariants and the method used in the Hamiltonian formalism can be
summarized as follows; one looks for a canonical transformation which makes the new
Hamiltonian (called G) independent of & to first order and almost independent for small
amplitudes. This process can be iterated with successive canonical transformations,
pushing the 8-dependence to higher orders.

Let us do now the first step explicitely. The canonical transformation from (I,¢) to
(J,9) is defined by the generating function Stot :

StOt (¢,J,9) =¢J + S (¢’J’e) s (3'5)

with the following relations between the old and new variables

_ 3Stot 3S
I= e =3+ 5,
_ 3Stot  _ as
Y= Tt
3s
6(v,,0) = H(4,1,8) + —2L (4,3,0) . (3.6)

96
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In order to express both H and G in the last equation (3.6) as functions of the
Stot-variables (¢,J), we may use Taylor's expansions and apply the first two equations
(3.6) :

H(p»1) = H(8,d) + BH 35y + ...

G(y,J) = G(¢,J) + 3Gy Sy + ... (3.7)
where 3f[ is a notation for the partial derivative of f with respect to I.

Introducing (3.4) and (3.7) into the last equation (3.6) and remembering that
3Hg1 = Q, one obtains the following relation :

G(¢,J) + 3Gy = 3Sg + ... = Ho(Jd) + Q » 3Sy + Hy(4,J0,8) + dH 1 « 35y + 3Sg + ... , (3.8)

where the underlined terms are to first order in the perturbation.
Since the structure of the machine is periodic over the turn, the functions of

interest are periodic in 6 and ¢ with a period of 2w. It is therefore possible to analyse
them in Fourier's series :

S =n§p snp exp [i(n¢ - po)]

9

Hi= 1 hgp exp [i(n¢ - po) |
nsp
G =n§p gnp exp [i(ne - po)] (3.9)

where spp, hpp and gpp are the harmonic coefficients of the generating function, the
perturbation Hamiltonian and the transformed Hamiltonian, respectively. Introducing the
expressions (3.9) in the first order terms (3.8) and dividing by the phase term which is
in factor, gives for every harmonic :

gnp = 1nQ Spp *+ hpp - TP Spp - (3.10)

The generating function (3.5) must be chosen in order to satisfy (3.10). Let us
therefore solve (3.10) with respect to the coefficients spp of S(¢,J,8) :

. hnp - 9n
Spp = 1 —h—-_—% . (3.11)

The canonical transformation from (I,$) to (J,¥) must remain finite and the
convergence of S implies that spp be bounded.
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When Q is rational, i.e. Q = p/n, resonances of the type nQ-p appear because of the
small denominator in (3.11). The only way to ensure the boundedness of spp is to make
its numerator equal to zero, which means that gnpp = hpp and spp vanishes. In this
case, coefficients Inp of the new Hamiltonian are different from zero and the first
order perturbation theory app]ieszz’zs); the concepts of isolated resonances,
bandwidths, resonance curves and separatrices can be introduced and used for instance in
the optimization of the sextupole correction scheme (see Section 3.2).

When, on the contrary, Q 1is idrrational or at least distant from every strong
resonance line, the denominator of (3.11) is different from zero and the new coefficient
gnp can be chosen freely. To make the new Hamiltonian G independent of 6 to first order,
as desired, the obvious choice is gyp = 0. Indeed, by virtue of (3.8) and (3.10), G will
then contain only higher-order terms in the perturbation :

G(y,J) = aHy1 354 + ... (3.12)

The proof of this statement can easily be given. From (3.4), the perturbation H; and, as a
consequence, the function 3S, are proportional to ap IM/2, Hence, the first term in

2

(3.12) for the new Hamiltonian goes like a“y 1(m-1), i.e. it is to second order in the

perturbation ap and to a higher power in the amplitude.
Successive canonical transformations can then be applied to suppress the dependence
on 8 of G to second, third and higher orders, if desired, albeit the development becomes

tedious.

3.2 Minimization of the perturbation due to sextupoles

As explained in the previous chapter on the chromaticityl), sextupole magnets are
used to compensate the linear perturbation. Section 2.1 of this lecture indicates that in
the presence of these elements, nonlinear effects are necessarily observed. In addition,
it was mentioned that HARMON3) can calculate the 1linear compensation, but also
minimize some nonlinearities. Let us describe now how this program achieves this, using
the formalism recalled in the preceding section.

Let us note first that the approach of Section 3.1 can be and has been generalized
for two dimensions?“s2%) (x and z). The expression equivalent to (3.4) is in this

case :

Iim 1
H o= Hothy = Gl + QT + M 102 1, 2 exp{i [3-K) (0c+0x0)#(1-m) (824020 ]}, (3.13)

where j+k+1+m = N and N is the "order in amplitude" of the perturbation.

Following exactly Section 3.1, a canonical transformation from (Iy,éx,Iz,¢7)
to (Jyx,¥xs,Jz,¥z) has to be defined by a generating function Sgot depending on
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five variables (generalization of (3.5)). The following steps remain the same : expression
of the new Hamiltonian G from H and Stot, Taylor's expansions for H and G, and analysis
in Fourier's Series of the three functions H, G and Stot. However, the equivalent
equations of (3.7) to (3.9) are more complicated, since we need two phases and two
amplitudes, before and after the transformation. Let us write explicitely the coefficients
of the Fourier's series of H;, which are the main characteristic quantities
(generalization for two dimensions of hpp) :

J+k J+m
hjkinp = : P DB (BT (B2
Jkimp = o(N+3)/28, jikiitm! ax(N-1) ‘R R
x exp{i[(3-k)(¢x-Qx8) + (1-m)(62-Qz0) + po]} . (3.14)

The coefficients hgp (C standing for jkim) are calledzz) excitation coefficients
when the indices jklm correspond to a resonance, and stabilizing coefficients when j =k,
1 =mand p =6, associated with an attenuation of the resonance effect by detuning.

Eventually, the harmonics of the generating function defined above for a two-
dimensional motion are given by a relation similar to (3.11) :

oo = i hcp - 9cp
Cp (G-K)Ox + (1-m)Qz-p  °’

(3.15)

in which one recognizes the well-known resonance condition if we stipulate that ny, =j-k
and ny = 1-m.

Let us consider the specific problem of the minimization of the perturbation due to
the sextupoles used for compensating the linear chromaticy. Exploiting the first-order
perturbation theoryzz’z“,zs), isolated resonances can be studied as explained in
Section 3.1. The coefficients hcp of interest are necessarily of order N = j+k+l+m = 3

in amplitude (degree of the sextupole potential).

Hence, the first order perturbation (with gcp = hcp) evidences the existence of
resonances of third order in amplitude. However, second (and higher)-order terms in the
pertubation are also present in the development of the new Hamiltonian (generalization of
(3.8) for two transverse dimensions). These terms contain products of partial derivatives
of Hy and S (see (3.12)) which have the following forms :

hcth-q-Jx(j+k+j'+k'-2)/2 J,(14m+1'4m*) /2

hcth,q,dx(j+k+j'+k')/2 J,(14m+1'4m*-2) /2 R (3.16)

leaving out factors of proportionality and exponential functions. In (3.16), the condi-
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tions j+k+1+m = j'+k'+1'+m' = 3 prevail (sextupoles are considered) and the direct conse-
quence is that the order in amplitude of the terms (3.16) is j+k+j'+k'+1+m+1'+m'-2 = 4.
Hence, sextupoles excite also fourth (and higher)-order resonances. The physical explana-
tion is that trajectory oscillations due to nonlinear kicks propagate around the ring and
do affect the kicks of other sextupoles.

The program HARM0N3) includes in dits minimization process a set of coefficients
hcp (with N = 3), like hig11» hio20 and hjgo2 which concern coupled motion. Contri-
butions to second order in the perturbation are indirectly reduced, since their excitation
terms are made of products of h's (see (3.16)).

It was said in Section 2 that nonlinearities in & of the amplitude beating
(ﬁ—vectors or betatron function variations), and variations in y (or Jy) and in §
of the tunes Qy are always present in a ring containing quadrupoles and sextupoles. The
Hamiltonian formalism provides means to calculate contributions to these different
variations using integrals of the form (3.14). For the amplitude beating, the starting
equation is the first in (3.6), which can be written for both transverse coordinates :

Iy = Jdy + as¢y . (3.17)

Equation(3.17) gives the variationaly and hence the fluctuations of the By function by
virtue of :

Agy _Aly
By Iy T

The derivatives of the phases yy with respect to 6 give the tune variations due to
nonlinear potential and are easily related to the Hamiltonian G by the canonical equations
of motion :

dy
Ay = 3T = 3 - (3.18)

Let us stop for a short while at the equation (3.18). The preceding discussion on G
can be reused in the present context. In the frame of the first-order perturbation theory,
G is restricted to its low-frequency terms (average over the independent variable 8) and
contains resonant and stabilizing coefficients. However, in general, the Hamiltonian G
contains first, second and higher-order terms in the perturbation, i.e. coefficients hcp
(since gcp = hcp) and products of h's respectively. This last property of G holds also
for its partial derivative 3G/3Jy appearing in (3.18), and consequently for the tune
variation AQy.

As a first example, we can now write the expression of the change of Qx which is
independent of the amplitudes Jy:
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. N2000g No200-g . N1ooog N1200-
8Qx = hi1o00 - 4 1 ( zgx - q 4+ " D)
q

. (3.19)

In (3.19), the presence of first and second-order contributions is obvious. From the
definition (3.14), the coefficient hygooq contains Tlinearly the dipole component B,
while hyggoq contains the first derivative B'. In quadrupoles and sextupoles sitting at
positions where the dispersion Dy is not vanishing, dipole contributions will be B'DyS
and 1/zB"DXZGZ, respectively. In the sextupoles, quadrupole contributions are B"Dy6.
Hence, the tune dependence on & and 62 is calculable from (3.19).

A second example concerns the variation of Qy with the amplitude Jy in the
presence of right sextupoles :

h3000q No300- 1 h2i00q M1200-
AQx = 2Jx[h22000 -9 1 ( 3gx -4 4 +3 Qg T q 1) ]
q

. (3.20)

By definition, all the coefficients h in (3.20) are of order 3 in amplitude and
contain the sextupole component B".

Expressions of the type (3.17) to (3.20) allow us to calculate the tune and
betatron variations. HARMON®’ includes in its minimization process the coefficients
th which control the derivatives Q', Q", Q'" and B' with respect to § and the variation
of Q with the amplitude.

To sum up, perturbation theory in the canonical variables makes it possible to

quantify and consequently to minimize some of the nonlinear effects due to sextupoles,
necessarily present in the ring.

4. DYNAMIC APERTURE AND ANALYTICAL APPROACH

It would be ideal to have a closed formula for the dynamic aperture defined in
Section 2.2, in order to make the design of accelerators easier. Even if this seems very
difficult, it is justified to strike a balance between analytical and numerical methods so
as to improve the analysis of the effects and "increase the useful information obtained
per computational cyc]e"ZI).

4.1 Possible use of the Hamiltonian perturbation

The recent investigations using Hamiltonian formalism aimed at the estimation of the
invariant distortion in the presence of nonlinear forces and not directly at the
determination of the dynamic aperture, knowing that both are related in some way. It is
felt indeed that near or above the stability 1imit defining the dynamic aperture, either
unbounded invariants (going to infinity) do exist or the invariant tori cannot be
calculated analytically, because of the onset of stochasticity. As briefly recalled in
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Section 3.1, the Hamiltonian perturbation requires iterations to improve the accuracy of
the determination of the invariants. Consequently, the critical question is the
convergence of this method, mainly close to the stability limit.

Following Section 3.1, the important point is to seek a canonical transformation
which makes the new Hamiltonian G dependent only on the action J. The problem then
consists of solving the Hamilton-Jacobi equation which has the form (see (3.6)) :

G(J) = Ho(J + 3S¢) + H1(¢,J+35¢,9) + 353 . (4.1)

As explained in Sections 3.1 and 3.2, plain iteration can be done in the perturbation
and high order terms are present in the development of the new Hamiltonian. For example,
after two iterations the Hamiltonian G is of second order in the perturbation (Eq. (3.16))
and can be written formally as fol]owslo) for two dimensions :

G = Qxdx + QzJz +m2n Bmn Jxm/2 Jzn/2 . (4.2)

The quantities G, Jy and J; are constants of the motion and G describes to second
order the distortions of the ellipses. The generating function S(¢x,dxsdz5J758)
makes it possible to write the relations between the coordinates (see (3.6) and
(3.17)) before and after the canonical transformation :

by = ¢y + BSJy (oy> Jy, 8) . (4.3)

Since Jy are constants of motion, the first equations (4.3) give the distortions of
the amplitudes (emittances), provided the following equations for the initial conditions
can be solved :

Iyo = Iyo (JX9 JZ’ ¢X0’ ¢Zo) . (4°4)

Some results based on such a second-order perturbation were compared with tracking
resu]tslo). However, it may be difficult to solve the nonlinear algebraic equations
(4.4) and the truncation of third and higher-order terms of G implies the perturbation to
be small enough. Hence, the second-order approach presented here has difficulties to
describe the motion near the stability 1imit and many plain iterations may be necessary to
improve the description, since the convergence becomes slow as mentioned above.

0) were carried out to introduce iterative methods in which

More recently, studies?
the algebraic complexity at each iterationdoes not increase as rapidly as with plain
iteration. In this work, the Newton method is used for solving the Hamilton-Jacobi
equation (4.1). As before (Section 3.1), the linear part of the motion is separated and

the Fourier transform of S (Eq. (3.9)) is taken; but no Taylor's expansions are used. The
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Hamilton-Jacobi equation can then be stated in terms of the coefficients SanO) :

1 2n 2w
i(nQ-p)snp = - (2“)2 [ [ d¢ de exp[-i(n¢-pe)] x
0 0
x [Ho(3+3S4) - Ho(J) - Q3Sy + Hy(e, J+3S¢, 8)], n # 0
1 2n 2w
ip Sop = - (2n)2 £ £ de de exp(ip®) H(¢, J+3S4, 6), P #0 (4.5)

choosing arbitrarily sgq = 0, subtracting Ho(J) and -QaS, on both sides of (4.1), and
using the fact that G(J) - Ho(J) makes no contribution to non zero n (angle independent).
After dividing by i(nQ-p), Eqs (4.5) may be summarized as :

s = A(s) (4.6)

where s is the vector made up of the Fourier amplitudes spp (Eq. (3.9)) and A is an
operator defined by a double integral (Eq. (4.5)). If only a finite number of Fourier
modes are included in (4.6), this equation can be solved by a Newton ijteration under
appropriate restrictions on the Hamiltonian (H, and its derivative 3H;j not too large)
and the phase-space region considered. The interest of this approach is that in the Newton
method the first iterate of s already involves terms of all orders in the perturbation Hy,
in contrast to the first iteration of the plain iteration described above. This implies
faster convergence. In a single-resonance model, the convergence properties were found

to be exce]lentzo)

(three Newton iterations suffice near the separatrix). In a
two-resonance model, the convergence degenerates when the perturbation increases till the

resonance islands overlap, as expected.

Another idea, recently considered21), is exploiting Lie operators in order to
exhibit perturbation series free of small denominators and to generate an averaged
Hamiltonian of given order in the perturbation. This method has been applied to three
particular problems in one dimension; zeroth-harmonic sextupoles and octupoles, quadrupole
field errors and arbitrary harmonic sextupoles and octupoles.

An entirely different way to deal with the question of the dynamic aperture is to go
back to the differential equation leaving aside the Hamiltonian formalism and to find good

approximations for its solution.

4.2 Successive linearization of equation of motion

Let us rewrite the one-dimensional equation of motion (3.1) in the horizontal plane,
with m = 3 since we are concerned with sextupole effects. Hence, introducing a
differential operator L :



& 4.7
L=yt K(s) » (4.7)

equation (3.1) simply becomes :
L[x(s)] - a3(s) x2(s) =0 . (4.8)

Let us try to solve this differential equation by an iterative process of
1inearization9), assuming the nonlinear part as is small (a few percents) as compared
to the linear one. The first approximate solution comes from a first linearization of
(3.1), i.e. :

Lx(®)(s)] =0 . (4.9)
The solution of this purely linear equation is well-known and given in detail 1in Ref. 26.
For the complete solution which must contain the effect of the nonlinear term, we can

write by definition :

x(s) = x(O)(s) + u(s) , (4.10)

and the corresponding equation for u(s) becomes :
L(u) - 2a3(s) x(O)(s)u - as(s)u? = az(s)x(D%(s) . (4.11)

The next approximation consists of dropping the quadratic term in u and this step is
called second linearization :

L[u(®)] - 2a5(s) x(O)(s) u(®) = ag(s) x(D%(s) . (4.12)
The initial conditions must satisfy :
xg = x(9) (0) + u(®) (0)
x'o = x(9)'0) +u(®)'(0) . (4.13)

In general, the initial values can be arbitrarily distributed between x(%) and
u(o), but the choice :

x(%) (0) = x¢ u(®)0) =0

x(9)'(0) = xq" ul®'0) =0 (4.14)

proves to be quite adequate in practice. The linearization process can be continued to
higher level, giving a more and more precise solution.
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As mentioned before, a typical feature of the solutions for the nonlinear betatron
motion is to remain bounded up to a certain amplitude and then to become suddenly
unbounded. The threshold-amplitude is called the dynamic aperture of the system. The term
proportional to x(9)2 §n (4.11) dindicates that, from a certain amplitude onwards, the
nonlinear term will contribute dominantly to the behaviour of the solution. At this point,
a rapid self-amplification will take place. So far, it seems that the effect of dynamic
aperture is a pure large-amplitude effect, whose occurence cannot really be described by
perturbative methods.

In real systems, however, the stability limit frequently occurs at small amplitudes,
before the nonlinear term becomes dominant, so that perturbation treatment is applicable.
This should correspond to another mechanism driving the solution in the self-amplification
regime. To look for such a mechanism, let us start from (4.12). The term proportional to
as x(®) on the left hand side of (4.12) represents a focusing force depending on the
amplitude, which may induce parametric resonances. The term on the right hand side drives
the linear stopband as well as third-order resonances associated with unbounded motion for
distinct values of the phase. The consequence is that, in the general case where the phase
is not on a resonance, the mechanism driving the solution in the self-amplification regime
seems to be the parametric resonances.

Since u(®) s unbounded if the homogeneous part of the solution is unbounded, the
homogeneous equation :

L[u(®)] - 2a3(s) x(®)(s) u(®) =0 (4.15)

contains the whole information about the dynamic aperture, within the approximation of the
second linearization and the assumption that the parametric resonance mechanism prevails.

Let us now discuss the equation (4.15). In general, x(%)(s) is not periodic over
one magnetic period described by the functions K(s) and az(s). Consequently, Eq. (4.15)
can only be reduced to a vector recurrence containing a non-constant transfer matrix :

0 0
(u( )n+1> (u< ) )
=M
0)! n 0)" . (4.16)
u®)’ u(®)"'

However,if the normalized phase advance u/2w per magnetic period is rational, i.e.
p = 2np/q, p and g being integers, x(%) is periodic with a period equal to g-times the

magnetic period and the equation becomes again of Hill's type. The associated matrix over
one new period is independent of n :

g-1

R = M; (4.17)
i=0
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and its elements are polynoms in xo and xo'. The theory of linear motionzs) tells us
that the solution u(®) will be bounded if the following condition is fullfilled :

|Tr(R)‘ <2 . (4.18)

It has to be noted that the condition for boundedness of the motion is an explicit
function of xg, Xo' and can directly be used for an estimation of the stability limit.

In this approach, it was assumed that the second mechanism driving nonlinear
instabilities is the occurence of parametric resonances caused by fluctuating transfer
matrices in the perturbation equation for u(%), Eq. (4.15). These resonances appear at
small amplitudes driving the solution towards higher amplitudes where the
self-amplification takes over. It should be recalled that this mechanism does not
necessarily prevail for all nonlinear motions and all the values of the parameters, like
the strength a3 and the phase advance u of the treated example. As already explained,
rapid self-amplification can take place suddenly at a certain amplitude and chaotic motion
may also arise. This is for instance possible in the two-resonance model, when the
resonance islands nearly overlap. In such cases, the linearization process described above
also becomes difficult.

As an example,the linearization method was applied to a FODO 1attice9) with two
families of sextupoles near the focusing and defocusing quadrupoles, respectively. The
normalized phase advance Q = u/2r is varied from 30/120 to 50/120. Applying the condition
(4.18) leads to a curve xg = Xo(Q) giving the maximum initial value for which the motion
u(®) s still bounded, i.e. the stability limit as a function of the phase (dotted
curve in Fig. 5). This curve is compared with the expected 1imit (full curve in Fig. 5)

and with the resonance fixed-point-]imit22’23)

calculable near the third integer
resonance (the large points in Fig. 5). The expected limit was found by numerical
computation of the exact nonlinear transformation over 10° cells, while increasing xg in
steps of 1 mm until unboundedness was reached (overflow). The fixed-point approach breaks

down if Q is distant from 1/3 by more than about 1/120.

Comparing the two curves of Fig. 5, the agreement is remarkably good for Q-values
between 34/120 and 50/120. Between 34/120 and 30/120, the linearization method (with two
iterates) begins to fail, while below 30/120 it does not succeed in giving a stability
1imit different from zero. Even if the results can possibly be improved by adding more
jterates, it is felt that for Q smaller than 30/120 large amplitude effects and chaotic
motion set the dynamic aperture. Consequently, for these particular Q-values, the method
can not really be applied in the form it has been presented here.

The linearization of the equation of motion and the associated stability condition
offer some advantage with respect to tracking of many particles over a large number of
periods, since it implies evaluating the product of a reasonable number (about 100) of
matrices. This method is being extended to two-dimensional motion and its range of
validity explored.
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Fig. 5 Horizontal stability limit as a function of the normalised phase advance, for a FODO
lattice
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THEORY OF RF ACCELERATION

G. Dome
CERN, Geneva, Switzerland

ABSTRACT
Formulae for RF acceleration and synchrotron motion are derived

from basic principles in the case of an arbitrary RF voltage.

1. ENERGY GAIN AND TRANSIT TIME FACTOR

Particles experience the effect of RF fields when they cross accelerating gaps that
basically produce an electric field § parallel to their trajectories. The gap is the space

between two electrodes provided with a beam pipe, which for simplicity we take as a circu-
lar cylinder of radius a.

Let V(r) be the amplitude of the RF voltage impressed across the two electrodes. When
a particle with electric charge e (which may be larger than an electron charge) crosses
the gap at a distance r from the s-axis (see Fig. 1.1), it gains an energy

AE = e/ﬁs(s,r,t )ds.

T
fa__lo
s
g
Fig. 1.1 - Longitudinal cross section of an accelerating gap

The time dependence of &g is given by
85 (s,1,t) =& (s,1) sin (wppt)

Traditionally, for circular accelerators the origin of time is taken at the zero
crossing of the RF voltage with positive slope. The phase ¢ of the RF voltage when a
particle crosses the middle of the accelerating gap (at s = 0) is called the phase of the
particle with respect to the RF voltage. On the other hand, for circular accelerators in
the Russian literature and for linacs, the origin of time is taken at the crest of the RF
voltage. The phase ¢ in that case is such that ¢ = %—+ ¢. (Strictly speaking, in the
previous sentences, the term 'RF voltage" should be understood as '"RF voltage times the
charge e of the particles'). If we neglect the change in velocity of the particle when

crossing the gap, the time t when the particle is at position s in the gap reads
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W
t=¢+_RFS

t = wRP v

+ and

b .
Wpp vV
where v is the particle velocity in the middle of the gap.

For simplicity's sake we assume that the gap is symmetric with respect to the plane
s = 0; then

w w
AE = efz;s (s,r) sin [¢ + ——VR£ s} ds = e sin ¢fgs (s,1) cos[—%f- s) ds (1.1

By representing the fields for r = a as Fourier integrals along s, one gets

P w I [fBE . Z] +% w

f ?g,s(s,r) cos [%RFs]dSL-O——w;F—; / %5(5’3) cos[———— sJ ds
J. L. 0] 4

+oo

- - w
With V(r) = fgs(s,r)ds = V(0). J, [%F r], this may be written as

—co

= w Io[w;R;F‘ zJ
f t.(sm) cos [ s)as = V() - 1) - w—‘;F—g—- V(a) T(a)
e Llv %

where by definition

+oo

/ és(s,r) cos (“’_51:_ s ] ds

-

T(r) =

4+

f gs(s,r) ds

- 0o

is the transit time factor at r; it is the ratio of peak energy gained by a particle with

velocity v to the same quantity if v were infinite.

T(r) is simplest at r = a, where gs is zero outside the gap. In many practical cases,

a good approximation is obtained when ﬁs (s,a) is considered to be constant in the gap; then

“RE
v

(LRF
RE

[N )
| S—

Ty = [ (1.2)

[T o)
N———r



- 112 -
Finally,
AE = eV sin ¢ (1.3)

where

copp T wpp T
" Io[‘r;] YRE IU[V ;]
v=9@ - T@ =Vw)-%&—aj‘u@
wpp @ c wpp @
(5 7) 14 7]
/LURF T
with eV > 0. Neglecting the second order variation in r due to IO~L—;;— ;-], we are left
with
v="Va - T(a) for all particles (1.4)
wRF a]
o\ ¥
w a
It is seen that through the transit time factor and the Bessel function IO[—;— -;],

the effective peak voltage V depends on the particle velocity v. This effect will be
neglected in what follows, so that all particles will be considered as experiencing the
same peak voltage.

More precise (but more complicated) expressions for AE can be found in Ref. 1.

2. HARMONIC NUMBER

For some reference particle (also called synchronous particle), the phase ¢ is kept
unchanged (mod 2n) at a value 9 when the particle returns to the same accelerating gap
after one revolution along the ring. This requires that Opp = h wg where wy = 2n/Ty is the
angular revolution frequency of the reference particle and h is an integer called harmonic

number.

Then

w, . Ty = 2vh (2.1)

RF

When the ring is large, w, is small and h may be quite a big number.

3. FINITE DIFFERENCE EQUATIONS

For simplicity, let us assume that RF acceleration takes place in N identical cavities
evenly spaced along the synchrotron ring. Let n be the number of accelerating cavity

traversals by a particle.

Definition of variables (see Fig. 3.1)

Pgs Vs momentum and velocity of the reference (synchronous) particle

tn’ time of nth cavity traversal by the reference particle



Py = Py ~ Pg

8¢ = b = o,

In what follows, & represents a difference taken with respect to the reference particle

at a given time; d represents an increment during acceleration.

Z acceleratin,
-~ cavity £

Fig. 3.1 Definition of variables

Besides the general coordinates (R,0) whose origin is the accelerator centre, each
bending magnet has its own local coordinates (r,6) whose origin is the centre of the
reference particle orbit in the magnet. Any integral with respect to 6 is taken in the

bending magnets only.

Phase variation between adjacent cavities

In order to keep the phase of the reference particle constant at every cavity tra-
versal, the RF phase must be shifted by 2rwh /N between adjacent cavities. The phase of any
particle with respect to the RF voltage is then given by

¢ (t) =/pr dt - he(t) (3.1)

where O(t) is the azimuthal position of the particle. With this relation ¢ is not only
defined during cavity traversals, but it is defined at any time. In particular, for the
reference particle,

d:bs

T " YRE T hug = 0 (3.2)

For a particle with an energy deviation 8y/vg with respect to the reference particle,
the phase is compared to ¢s' If Tr is the revolution period, the variation of 6¢n from one

cavity to the next is
T 2m w
- - X oL, - RF -
S " Tl T Ty by = (T - To)
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But Tr = C/v where C is the orbit circumference and v is the particle velocity. For a

relative momentum deviation &p/p,

8¢, jon a3 @ =k f
ol by definition of the momentum compaction a; a SR Dx(s) de

where Dx(s) is the radial dispersion.

— = JQ e by relativistic kinematics.
v Yo P

Therefore, if w. is the angular revolution frequency of a particle,
Sw.. 8T 1 Sp Sp 1

0 To 42 p p v2

- (3.3)

If n vanishes for some y, this particular energy is called the transition energy Yeps

when o is independent of y, a is equal to 1/Y%r' Finally,

Sone1 T 800 T dnay T 0y

since XY = g2 Sp
Y P

Energy variation between adjacent cavities

Since all accelerating cavities are assumed to be identical, the total RF voltage

produced along the ring is NV. With (1.3) we have

9B
= - = ; R (3.5)
AE En+1 En eV sin % N§ 50+ T de dr

In the righthand side, the first term represents an energy gain which is lumped in the
accelerating cavities, whereas the second term represents an energy gain which is distri-
buted all along the magnets. Although the second term is usually negligible with respect to
the first one, its variation for particles with different energies must not be overlooked.

For the reference particle

3B :
= E - = i - & zs
AEg = bs,n+l Es,n evsin o) - 9g 5t g dedr
To first order,
3B
N _ eV . s _ € zS
i;'(AE - AES) =5 (sin ¢n sin ¢S) zﬂ-gg =t s de d&x (3.6)

*) This definition of n is the same as the one used in Ref. 2, but another definition of
n which differs in sign is also used in the literature.
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But

6x = D (s) - —%’- and  p=-eBr=-e (B,) R (3.7)

where < BZ > is the average magnetic field along a closed orbit:

.1 .
<Bz>—2anBz rdo

With (3+7) the last term of ( 3:6) becomes

egp_ast [ e§p_8<st> sp | P_1 R
" p at rs,Dx(s)de=-ﬂp 3t Rsansoz=—e<BZS>RSp [p--&l—i Rsa
-5 p_R
p["p R] Ry (3.8)

because from (3.7),

. 3<B_> 3<B.> dR' ] 1 dR 1 3<B > R 3<B_> R
P_ 1 z + 2 I . z_, . z_ 1| - (3.9)
P at 3R dt R dt <BZ> at <BZ> aR R °

— mm—

[average magnetic field index + 1] =

Qe

Now we must remember that AE, AEg are gained in different times T r/N, To/N. As next

approximation, E and ES are considered to be smooth functions of t:

T. dE Ty dE
BE » & = » AE_z — —>
N dt s~ N dt
With (3.3),
oo g -ox & Tod T BB T T AR T d6D e Te
s N dt N dt N dt N dt N dt  "p N at
Using the kinematic relations dE =v - dp =er dp , SE =v - §p = wg RS sp :
N 1 d(SE) $p 1 dES d [SE] SE &y Sp .
— - = — ——— - —_— e —— T — —_— + —_—— - —
7 (AE AES) oy It n p oy dt ~ dt \ug wy wg n D Rsp+2nd order terms.
\—p/

which is exactly equal to (3-8), i.e. to the last term of ( 3¢6). Finally ( 3-6) reduces
to
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d E - E Y
NV . .
Fra (—-——;’:—S—J= e2—1T(s.1n ¢ - sin ¢S) (3.10)

The present derivation of Eq. (3,10) is the same as in Ref. 3 (p.156-163); this equa-
tion may also be derived by using the generalized angular momentum T x (5 +e K) instead
of B (Ref. 4). Any correct derivation must take into account the electromotive force
induced by a varying magnetic flux; it happened often in the past that Eq. (3.10) was
either wrongly derived or wrongly stated.

The corresponding finite difference equation reads

[E—ES} (E-ES] eV E-ES
- = sin - sin where = R -
T w0 ) o (sin ¢ ) o0 (P-p.)

(3.11)

Finally, about the set of finite difference equations (3-4)i, (3.//), one should quote
H. Hereward: "These equations are only roughly correct, and it is work to estimate how
good they are' (Ref.4, p. 11).

Betatron electromotive force

The betatron e.m.f. € along a closed orbit appears in (3-5) as

M = eV sin ¢ + £ (3.12)

= -2 .
e = 3thz T de dr

In this integral, the closed orbit should be considered to be fixed with respect to time.

where

Computing the integral first with respect to r , this may be rewritten as
__20
&= s b(r,8) - BZ (x=0) -rde

where r is now taken on the closed orbit x=0, and b(r,0) is an effective magnet width

inside the orbit. Using (3-7) it is seen that

= 3 . =2 .
e &= ¢ b(r,6) - p de T [pﬁ(r,e) de]
or

e & = 21 — [p . b] where b=z<b(R) >= %—ﬂ- b(r,s) + do (3.13)
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b = < b(R) > appears to be an average effective magnet width inside a closed orbit. Since
the orbit must be considered as being fixed in time, the dependence of b on time can
only be due to possible changes in the configuration of BZ when the magnetic field is

increased; and these changes are kept as small as possible. By using (3.7) and (3.9) we

obtain
P d b 153 1 2B p_1R
eé_ . P ob = %P _ =B2_2X2 3.1
n P s TPt where pat B> st p oR (5.14)
and where ideally %% should be negligible.
Since
T T
oL dE_ T dp _ Zr pdp
A TS wRFr=% Ra
(3-12) becomes
dp _ eNV . 12 (3.15)
Rdt—Zn sm¢+2n
Finally, with (3-14),
g —eNVe' gR_.E_d_R. .a_h
Ra‘%"zT“mq’*b[dt rdt ) TPt (3.16)

In this relation the %%'- term should be negligible, while the b-term is (at most) of the

order b %%% , which is a factor b/R smaller than the left-hand side. Therefore, when

b << R (which is the case for all large synchrotrons), acceleration due to the betatron

electromotive force is a small fraction of the acceleration produced by the RF voltage.

4. DIFFERENTIAL EQUATIONS FOR AN ARBITRARY RF VOLTAGE

If higher harmonics are added to the fundamental sinusoidal RF field, in Eq. (3.10) and

(3.11) sin ¢ must be replaced by a more general function g(¢) such that

2n
gl + 2m) = g(¢) and g(¢) d¢ =0 (4.1)

hence

3

g(e) = ZE: (a, sinng + b cos n¢) (4.2)
n=1
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where one can take a; = 1, b; = 0 , since the values of a;, b; are defined by normalization
and by the choice of the origin of time. Eq. (3.10) then becomes

S (E) -2 e - ety (4.5)

which has to be combined with the differential form of (3.4):

SE

agl{ (¢ - ¢S) =-h wy - (4.4)
E

o

Instead of ¢ and 8E/w, as conjugate variables, we shall use ¢ and 8E/(hwg), so that the
elementary phase space area will read

SE SE _
-m; /\(Sd) = thAa(wRFt) = (SEA(St

With ¢ and 6E/(hwg) as conjugate variables, the system @.3) , (4.4) becomes

d (sEY) _ eNv

S0E) = 2 [ow - s69] (4.5)
d = -hH2 2.._11_. & = = 2

It (¢ - ¢»s) h? wg B7E [hwo] where E =y Ep =ymgC (4.6)

With (3.2), the system (4.5) , (4.6) may be derived from the Hamiltonian

__1l.o o _n_ (8B e\
H--Z hfuwg BZyE, [hwo] * TZn re + G(¢) 4.7
where
e a bn _
T = g(¢s) and G(¢) = - /g(¢)d¢ = Z t? Ccos n¢ - Y sin n¢) (4.8)
n=1

H depends explicitly on time through parameters which vary slowly during acceleration.
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5. HAMILTONIAN WITH REDUCED VARIABLES

The study of particle motion can be simplified by using reduced dimensionless vari-

ables y and t* instead of SE/(hwg) and t. Let

dt =K, at*

where K;, K, are slowly varying parameters. (5.1)
SE 1, N2
T

With the reduced variables and reduced Hamiltonian H*, the equations of motion read

dy _ _K oH_ _ oHf de _ K 3H _ M (5.2)
dt* K, 3¢ 3¢ dt* K, 3y 9y :
whence
K 1 n eNV K
* = N oo 2 h2u.2 2 &V Ky
e =g, B g o gy ey g [”’ * G(“’)]
By taking
— h2p,2 - = eV Ky |
hwu EZY_EO Kl K2 1 and h2n Kz" sgn(n) (5.3)
i.e.
2 By |82y ew |}
1. n_ e _ - Lo 5.4
—K_l_-Sgn(n) hu)o EZY—hZTTEO ’ Kz hwo n hZ‘ITEO ( )
H* becomes
2
H* = 2 - sgn(n) [w + G(¢)] (5.5)
oH* _ 3H* _

Fimed points. From (5.2) they correspond to 3 "oy 0

i.e., with (4.8): T +G'(¢) =0 or T = g(¢s) = g(¢) with y = 0.

Because of (4.1), beside o there will be in general another value of ¢ satisfying the

condition g(¢) = I'. Let ¢p be any one of them; for small ¢ = ¢ - ¢g,
[ 2 y3
o + 6@ = [r00 + 660)] - &' G0) $r - 8" 0) 7 -

2 3
*=-sgn(n) [T¢o + G(¢o)] + %;'+ sgn(n) - g'(¢0) %f.+ sgn(n) - g" (¢9) %7 (5.6)

If sgn(n) - g'(¢g) > 0, ¢o is an elliptic fixed point; this is the case of ¢g = ¢s

for ¢ being a stable fixed point.
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sgn(n)-[r¢ + G(¢)]

| I
0 /2 T 3n/2 2T 51/2

In the figure, T =
G($) = cos ¢
g($) = sin ¢

Fig. 5.1 Potential energy as a function of ¢.
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Vanishing bucket (¢

m)
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Stationary

when n < 0;

5

Trajectories in synchrotron phase space
when n > 0, ¢ and ¢, are interchanged.

Fig. 5.2

The complete phase space is wrapped around a cylinder 0 £ ¢ < 2wh.
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If sgn(n) - g'(¢9) < 0, ¢y is a hyperbolic fixed point; this is the case of the other

fixed point ¢4 = ¢u’ which is unstable.

¢s is at a minimum of potential energy; ¢u is at a maximum. When n changes sign,
the two points bg and ¢, are interchanged (see Fig. 5.1). Therefore, when crossing the
transition energy, the RF voltage must undergo a phase jump which puts the particles around

the new stable fixed point.

Separatriz. The trajectory in phase space passing through the unstable fixed point

(¢u, y = 0) crosses the ¢-axis at another point (¢e, y = 0). This trajectory is the bound-
ary between trapped and untrapped motion (or between libration and rotation); it is called
the separatriz (see Fig. 5.2). The phase space domain inside the separatrix is called
bucket; 1its area AS is the longitudinal acceptance of the accelerator.

From (5.5) the equation for the separatrix is

%~ sg(n) [ro + 66) - 14, - G(%)] -0 5.7)

Taking the derivative with respect to ¢:

y % - sgn(n) [r - g(¢)] =0

This equation is satisfied with y = 0 at ¢ = % and with %% =0at ¢ = L Therefore y is

maximum at o (this is also the case for any trajectory.)

Bucket width. The bucket width is (¢e - ¢Lg where ¢e is determined by the equation

ro, + G(s,) = e + G(4) (5.8)
Bucket height. With (5.1),
sE R A ~ y?
[_;] “h sp = K, y where %:-sgn(n) [rqsu + G(¢u) - Tog - G(¢s)] (5.9)
Bucket area (per bunch)
be b .
- * * - - - 2
AS = KzAs where AS = 2] y dé 27 do |1"¢u + G(¢u) T'o G(¢>)| (5.10)
b ¢
Ymr < 0) "

It is not invariant during acceleration.
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Period T, of (large) synchrotron oseillations around the stable fixed point

The phase space trajectories are represented by (5.5) where H* is constant. Let ¢,

¢, be the two phases where y = 0; then (5.5) may be written as

2
2 _sgnio) [re + 600 | =sgn([ 1oy + 66) | ==sen(o) [ros + G |

From (5.2)
d¢ _ 8H* _
dt* 3y Y
hence
ar = 9
Y

and with (5.1),

¢ ¢2
T, = [K|Tg  where Tt =2 ./“2 %% =2 do |T¢1 + G(oy) - T¢ - G(¢)‘_%
$1 ¢y (5.1

For a general RF voltage this expression involves cumbersome elliptic integrals.

6. SMALL OSCILLATIONS AROUND THE STABLE FIXED POINT

From (5.6), the small amplitude trajectories around ¢s are represented by the ellipse

equation

2
1%— +

¢
2

g'(¢s)| . >0, ¥ =1¢- 9 6.1)

It is apparent that all properties of small oscillations around ¢ involve the RF

voltage only through its slope at g-

Period Tso of small synchrotron oscillations

The subscript 0 refers here to vanishingly small amplitudes. With (6.1) the general
formula (5.11) simplifies to

- 27

v
v
y
¢‘F~ lg' (o) 102 Vg (o)

T, = |K1|Tso where T _ =2

G\.
<)

This is independent of the amplitude U as long as the y3 and higher order terms are missing

in (5.6) , which means as long as g(¢), i.e. the RF voltage, is a linear function of ¢.
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With (5.4) the synchrotron tune

is given by

hn eNVg'(¢s) 1 hnenvg' (o)

2 = —h —————— = _— T — ! =—£1—
Qso 82y ZnE, 7n 8%y E where Vg (¢s I (RF voltage) at ¢

(6.2)

Height of a trajectory in synchrotron phase space.

For a trajectory of half width §, the height is obtained from (6.1) as y2 = |g'(¢s)|$2
whence , with (5.1) and (5.4),

NI

T ~ 2 ' ~
()= x5 - o B_YeNVE("’s)‘ .
0)0 hu)o hn ZHEO

Longitudinal emittance. Bunch matching.

The area of a bunch in synchrotron phase space is its longitudinal emittance ES; it is
an invariant by Liouville's theorem. If we call "emittance of a single particle” the area

2nJ in phase space which is enclosed by the particle trajectory,

1
2

1
B 8%y eNvg' (o) |* .

B2y eNve' (4,)
R p2 [ev.s] (6.3)

Bz E
e ) B e |
~ hug hwy | hn 21Eg

The action J is an adiabatiec imvariant, i.e. it stays constant if the parameters in H are
varied infinitely slowly (Ref. 5, p. 154; Ref. 6, p. 110; Ref. 7, p. 234). If at some
time a bunch is matched (which means that its border in phase space is just the closed
trajectory of the outermost particles) then its emittance Es is equal to the single particle
emittance of its outermost particles. After a change of the parameters in H, the emittance
ES is unchanged but the action of the outermost particles has changed slightly and
differently for each particle, which means that the bunch is no longer matched exactly:
therefore the matching of a bunch can only be preserved in the adiabatic sense, i.e. if

the parameters in H are varied very slowly.

7. MOTION IN THE VICINITY OF THE FIXED POINTS

Take the Hamiltonian (5.5 ) with reduced variables:

2

* =4 - sg(n) [w + G(¢)]
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Canonical equations:

[aF fa
e -u
E3

I
<

& = sg(n) [F - g(¢)] ,

hence:

dt* = @ = d¢
Yoo e+ 2 sgn(n)  [re + G(4)]

In the vicinity of a fixed point ¢¢ ,

| &

~
C
Motion around the stable fixed point ¢s

2 = - - 2
y2 = C, - Mgl (6 - + ...
}’2
max
de* = dé

Y Pnax - 18" 61 G - 897

-1 lg' (s )]
t* = - Igv(¢s)' 2 arc cos E (¢ - ¢S)

ymax

or

Y.
(¢ - 0g)= —lg‘/% cos[‘[lg'(q»s)l't{l

Motion around the unstable fixed point ¢,
2= C o+ gt )] (6 -9 )%+ ...

d¢
yerleel - 0%

dt* =

y? = 2H* + 2 sgn(n) [MO + G(%)} - sgn(n) g'(e,) (o - ¢o)é e
7/

(7.1)

(7.2)



- 126 -

NI=

tk =+ |g-(¢u)|_ log [¢ - ¢u| >t o when ) (7.3)

u

Therefore the motion near ¢ is very slow (it is a fixed point!) This relation may be
inverted as

* Jlg'(%)l t*

¢ -, ve

min
-1 Vg ()]
t* = |g'(s )] argsh | ———— (- o) 7.4)
Yy - u
min
or
o -4 Tmin_ g [\I_—‘l ]
- S ——— S g|(¢ ) t*]
u
Vig' G 1 “
The motion is very slow when Yiin ~ 0.
€ <9 : particle inside the bucket
= - ! 2 = -
c lg' o)1 ¥2sn where RN
- ¢ = 0y ]
tr=lg'(e)l * argch |— (7.5)
min

or

-
¢ = ¢, = ¥pin - h [‘}lg'(%)l t

When Yoin 0 , the motion close to ¢ becomes very slow, and the synchrotron period Ts
becomes infinite. As shown by (7-3) to (7-5), all trajectories are slowed down in the

vicinity of the unstable fixed point.
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8. STATIONARY BUCKET WITH A HARMONIC CAVITY

When the beam is not accelerated but is simply kept bunched at a fixed energy, T = 0 and
the bucket is called stationary. In this case,which corresponds to collider operation, the

frequency of synchrotron oscillations as a function of phase amplitude EJ is given by
*

w
_ s
s T TK
*) )
where as a first approximation ° (see Appendix A, Eq. (A.8));

oo

W = sga(n) - Z a_ cos ng_ - %Jmn@) + 0(P) (8.1)
n=1
when

©

g(e) = Z a sinng¢ , T = g(¢5) =0, sgn(n)- g'(¢s) = sgn(n) Z na cos ng. > 0.
n=1 n=1

Assuming that a; = 1 is the dominant term,

¢ =mn 1if n< 0.

With (8.1), the synchrotron frequency for vanishingly small amplitudes is

o

w;(z) = sgn(n) - Znarl cos n ¢ = sgn(n) - g'(¢s) - Ig'((bs)l (8.2)

n=1

in agreement with (6.2). ,
The relation (8.1) allows shaping the variation of w52 with §. For example, if w52 is to be
proportional to @2, it is sufficient to take a; = 1 and sgn(n) - na cos n¢ =-1 for some

n > 1; then

2 a2 - Ay _m2 - 1(3)? -
o = 20,® - Z o <o = EE (8] 40 (8.3)
If the sign of a, is reversed so that sgn(n) - na cos ng = 1, then
R P P SR S ) OO
o =2 0@ + g e o =2 [1- B (5 oGy (8.4)

*) Jv(x) is the Bessel function of the first. kind of order. v and argument x.
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The latter case (8.4) corresponds to the usual operation of a Landau harmonic cavity,
which increases the relative spread of synchrotron frequencies as a function of ¥. In both

cases the amplitude of the harmonic voltage is such that

a
n

1
a —E

9. FORMULAE FOR A SINUSOIDAL RF VOLTAGE

Formulae are simpler when using the phase ¢ measured from the crest of the RF voltage:

4= 3 sg(r) +@

¢ ='TzLSgn(1") e ¢u =-T2Lsgn(r) % sgn(«’s) = - sgn) - sl

4

sin og ° sgn(r) = |r| = cos ¢,

From (4.2) and (4.8),
g(¢) = sin ¢ = sgn(r) - cosep , T =gle,) = sin o, = sgu(r) + cosgg , (.1)
G(¢) = cos ¢ = - sgn(T) * sin ¢p

Bucket width (cbe - ¢u) where

-1
I S 11 02, ot 9.2
tglo, - ¢, - 39) =15 t8 “’s'[l + a5 t87eg —0(tg'e) (9.2)
52
I Yo 3 - 3 .
From (5.9), 3 2|51n ¢y = g COS ‘psl and, using (5.4 ):

1
2 1

- g2y eNV sin ¢ i
SEV_ R _Eg o |___ S - = Eo 7|BY|g /A0 .
[ wg )_ P~ hug 2 hn 2nEq [1 s cotg ‘ps] hwy 2 hn Qso 1 s cotg ¢g [eV S]
(9.3)
Bucket _area  From (5.10),
(be 1
* = . _ . _ 2 .4
A Z/Z—f dé |¢U sin ¢  + cos ¢, - ¢ sin ¢ - cos ) 9.4)

¢
Y (nr<o)
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As* is steadily increasing with|<p5| . Its maximum value is obtained for o = n/2 (stationary

bucket):
2%

A* =2J2fd¢¢1—cos¢=16
S max
0

Let

A* A %
e e I O T R EER Ry IPO N

S
S max S max

The derivation of the series expansion for o(r) is given in Appendix B.

With (5.4)
E g? eNvV |2
= Lo | BTY
AS 16 hwg | hn 2E, a(r) per bunch [ev.s] (9.6)

Remark: Instead of (9.3), the dimensionless quantity d‘i)/moc is often used. In these

coordinates, we have:

Bucket height

D=

o eNV sin ¢ 3
Sp oo, - S . - sp
myC hn 2nEg } [1 g cotg 'ps] [moc ] ©.7)
Bucket area
h eNV | 2 8
. = oo . SP_ . RFrad
As mycR 16 fn ZvEq a(r) per bunch I:moc (9.8)

Period of (large) synchrotron oscillations in a stationary bucket

Besides the trivial case of a linear RF voltage, a sinusoidal RF voltage is the only
case where it is possible to compute simply the synchrotron period for any amplitude.
With r = 0 and G(¢) = cos ¢, the general equation (5,11) for the libration period reduces

to
é2 ¥
-1 . ar=1l i
Ts* = /2—/ d¢ Icos ¢, - cos ¢| 2 =7V2 ] dy |cos ¥ - cos w| 2 = 4K (sin %) 9.9)
91 b
where ¢ = ¢ - 03 K(k) is the complete elliptic integral of the first kind with modulus k.



Therefore
2 T L0 3 .
ws —[—;‘-K(51n7)] —1-—2'511’12'2'-—3751]1‘*7
~_ 2 L
-1-3 {%] XY [%} -

*2
s =

w

Ji) =1- % sin?

<)o

which shows that the error on the $* term in Eq. (8.1)

(9.10)

-4

is rather small.

o=y

Motion outside a stationary bucket
r=20 G(¢) = cos ¢
sgn (n) cos ¢ = -1 G(¢) = cos ¢, cos (¢ - ¢,)

From (5-5),

9
y2 = 2H* - 2 cos (¢ - ) = (2H* - 2) + 4 sinz[ >

d¢
dt*

Y . 1? 6 -9 1

2
Vi ¢ -
LSRR
2

The motion outside a stationary bucket is a "rotation', the period of which is the time

needed to increase ¢ by 2w :

2m
1
T =
A
1+ [}Jﬂg{] .}/F
\ 2 0

or

T* =

(9.11)
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It follows that

T*+ | 2 log for Ymin ~ 0
Ymin
2m
for y . o>
Y min min
Vi "

When rgln << 1, it plays the same role as cotg-qz)— in (9.9 ); both quantities represent

half the minimum distance to o outside and inside the bucket respectively.

10. ADIABATIC DAMPING OF PHASE OSCILLATIONS.

From ( 6.3):
1
R 2m h3 woz n 4
v=v2T 10.1
E 67y - eN g'(s) (10-1)
and
G}S_ZJ_ 21 h% w ® -3
=== (10.2)
hw b E B2y - eNV g'(s.)
2 2
Y% 2% . c?
where —=c" - = —
32 v RZ
s
and ~
o (SR
2nJ = myp (hw )

is an adiabatic invariant.
If Vg'(¢s) is kept constant during acceleration, the only quantity in (10.1) which varies
(slowly) in a synchrotron is % .

Let us compute

2
T3 3 - ay?
3 Y
i—logl= v 1 . 1 z _1] = lI:_____:I
dy Y 1 Y y Lay® -1 vy Lay2 -1
2 ~ O
Y
2 .2
1 3Y‘cr Y
Y 2 _ 2
Y Ytr
d—10g d >0 when y2 < y2 <342
dy IYI tr tr

<0 in all other cases
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Therefore,when y2 = 3 Ygr s l%l reaches a maximum where

We notice that 2

=<
[&}]
=<
N
e
o]
SNS——
w
>

1
The variation of '314 i.e. of y as a function of vy , is shown in Fig. 10.1.

or w

1 10 102

Fig. 10.1  Amplitude of phase oscillation as a function of Y .

In the figure, Yep = 5.

In case of a constant |¢gl during acceleration, the bucket width |¢e - ¢ul is constant.

From (9-3 ) the bucket height is, for a sinusoidal voltage:

Nil=

A 21 h3 w 2 g
EEL = 2 0 [1 - ¢s cotg gg J
ho E 8%y - eNVg'(s)

bucket

D=




- 133 -

where g'(q;s) =Cos ¢ = sin e -

The ratio of particle height (10.2) to bucket height is thus:

~

3, 2
(8E) article _ V23 2r h w = 3 i
—B——-—A = — ; 1- e cotg e
2 E 82y - eNVg'(s)
(6E)bucket © s
or, with (10.1), ~ ~
(6E)partic1e _ v

z 2 V1l - ¢ cotg ¢
(‘SE)bucket s s

~

Since this ratio behaves like ¥ , it is maximum at injection when the injection energy is

below v, ‘-/-‘;3- or above v, /3.

In these cases, if lxpsl and V are kept constant during acceleration, particles captured

at injection will stay in the bucket during the whole acceleration process.

Remark: In Fig. 10.1, $ >~ 0 while % +~ o when vy >y tr ;this means that the adiabatic
o]

approximation breaks down in the vicinity of vy o A more refined treatment (see

K. Johnsen, Ref. 2, p.178) shows that ? goes through a minimum while fl% goes through

o
a maximum at transition.

Separatrixz crossing; golf-club

Although the area 2nJ which is enclosed by a particle trajectory in phase space is
an adiabatic invariant, it follows from (9.6 ) that the bucket area As behaves like the
bucket height (9.3 ) and is not an adiabatic invariant, as appears clearly in Fig. 10.1.
Therefore, one must conclude that the separatrix is not a particle trajectory in phase-
space, except when there is no acceleration (r=0) and therefore no time variation of the
parameters in the Hamiltonian (4.7 ). The reason is that, as shown by (7.3 ), the particle
motion along the separatrix is extremely slow in the vicinity of oy 0 therefore violating

the adiabaticity condition; this condition indeed requires that the variation of the

parameters in the Hamiltonian (4.7 ) be negligible during a synchrotron period.

In order to arrive at a qualitative picture of the actual particle motion, we
observe that the reduced Hamiltonian (5.5 ) does not depend on time. Therefore this is
also true for the curves of constant H* in the (y,¢) rlane (see Fig. 5.2), in particular for

the slope of the separatrix at ¢ . This would not be true in the(l%— , q>) phase space
because from (5.1 ) °
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— =K, y or y =+ 7 (10.3)

and K, varies (slowly) with time. Since the elementary phase space area %%— A 8¢ 1s
o]

invariant, in the (y,¢) plane the elementary area

1 SE
Sy A 8¢ = R: . E;— A §o
0

. -1 . . V3 -1
varies as K, © . In Fig. 10.1 it is seen that when «y < Yer 7 OT Y > Yo V3, K2

decreases with increasing vy (or time); therefore in the (y,é)plane, areas shrink with
time and the motion appears to be damped. In particular, the separatrix is no longer a
trajectory since it encloses a constant area in (y,¢). Instead, one of the trajectories
which leaves % (or, strictly speaking, which tends to ¢u when t » -») will no longer
come back to ¢u (strictly speaking, tend to ¢u when t + +), but it will spiral
inwards around ¢s ; in other words, instead of being a center, ¢s has become a focus

(see Fig. 10.2). This shows clearly the adiabatic damping of phase oscillations:

~

~ -1 1 ~ -
y shrinks as K, ? , ﬁ%— expands as K,% , and from (10.3) y also shrinks as K,
(¢}

NI

On the other end of the separatrix, the trajectory which tends to 9, must then come from
outside the fish-shaped bucket. As a result, in reduced coordinates the longitudinal
acceptance of an accelerator is not a fish-shaped bucket, but rather has the shape of a
golf-club. In the literature, this effect is mostly discussed for low-g linacs (Ref. 8;
Ref. 9, p.27), for which the adiabaticity condition is worst fulfilled; since for a linac
Yep = s the (y,¢) plane corresponds to vy < Yir in Fig. 10.2.

When v <Y < Yy /3, K, ! increases with time; in the(y,9) plane areas expand with time
and the motion appears to be anti-damped. In particular, one .of the trajectories which
tends to % spirals outwards around g » and the handle of the golf-club is directed
toward the negative y-axis.

In fact, the motion in the(y,¢)plane depicted in Fig. 10.2 as a result of slow vari-
ation of parameters in the Hamiltonian, seems to be more generic (i.e. more common) in
dynamical systems than the motion depicted in Fig. 5.2. Indeed (Ref. 10, p.29-31) it is
exceptional that a trajectory leaving (or arriving at) a saddle point goes to (or comes
from) another (or the same, as in Fig. 5.2) saddle point; it rather goes to an attractor
or comes from a repellor, which in Fig. 10.2 is the stable fixed point ¢g In practice,
the motion depicted in Fig. 10.2 becomes apparent mainly when K, varies fast with vy ,

i.e. (see Fig. 10.1) at low B or near transition.
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Fig. 10.2 - Actual trajectories in the reduced coordinate y,¢ plane.
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11. BACK TO FINITE DIFFERENCE EQUATIONS. STOCHASTICITY

For an arbitrary RF voltage, the finite difference equations (3.11)and (3.4) read in

case of a synchrotron (RS = constant):

_ eV _
8Py ~ OPp T ~, [g(¢n) g(¢s)] (11.1)
- g =L, 11.2
n+1 n N Py h*lsprﬁl ( )
)

where n, Ves Py are slowly varying parameters.

This mapping preserves area in the P b plane. In contrast to differential

equations, there is no (smooth) constant of motion for the finite difference equations.

Fized points (mod 2n): If k is any integer,

o = b * 2wkn, %gt = 8p, = k is a stable fixed point
6, = ¢, + 2mkn, %%2 -sp =k  is an unstable fixed point.

The k # 0 case corresponds to working with the same RF frequency, but with an harmonic
number (h + Nk). Indeed, for a given WpE the synchronous revolution frequencies are such
that

wRF (Swo sh
w = —— — D . e—

h ’ Wo h

to which correspond the synchronous momenta

6p 5(1)0 §h Nk
This means that the vertical distance between neighbouring buckets is p__N In

P, |hn| °

order to prevent stochastic effects (Ref. 11) from becoming important, the ratio ¢ between

the full bucket height and the vertical distance between neighbouring buckets should be

less than 1 (Chirikov's criterion). From (9.7),

4|y eWsines |} g orge
By |hn  2nE, s COt8 ¢g

E_

1

_ 4 |hn eNVsineg 2/—f?————~————-

\ﬁ = N |8y T vk, 1 - ¢ cotg ¢
hn ‘

so that Chirikov's criterion reads, with (6.2):
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Q
-4 3% . g% o
£ =4 N 1 ¢§ cotg g <1

Therefore, differential equations are valid only when Qso/N << 1. For a finite Qso’
the motion near the bucket border becomes chaotic, making the bucket area shrink (Ref. 12);

in practice, this effect is still very small for Qso/N < 0.1.

w_ | op

)

=
+
p=4

complex intermediate fegion

¢

2m

%

u
complex intermediate Yegion

0

Fig. 11.1 Phase space enlarged to several harmonic numbers
at a fixed RF frequency (for n < 0)

Period of small synchrotron oscillations

In the close vicinity of o> the system (11.1), (11.2) reduces to

[2ﬂhn] [Znhn]_l
Nps n Nps n+1

n+l _Pn= - K (¢n- ¢S)

(11.3)
’ne1 " %0 T Pha
where we have put
_ _2mhn .
Pn- —Nps <Spn (11.4)
and
1
Ky = Zﬁﬁﬂ.fy_g_giil ) (11.5)
PsVs
With p defined by
4 sin? %= Ko , (11.6)

the system (11.3) admits of the general solution

. i
¢ " 4 = Re [a elnu] , P = Re [i a2sink- el(n 2)“] (11.7)
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This represents small synchrotron oscillations with angular frequency

W = ey =
so Ty "

N u
Nmoﬂ.

From (11.5) and (11.6) the synchrotron tune for small oscillations is given by

Q
4 N2 sin? (n —%9] = N2K,

The analogous formula ( 6.2) obtained with differential equations appears to be the

eNVg'(¢s) hn eNVg'(¢s)
2rthn — n ——
psvs Bey Ep

(11.8)

limiting case of (11.8) when N » =, i.e. when particle acceleration is evenly distributed
all around the ring with the total RF voltage NV remaining finite.

Adiabatic damping of phase oscillations

From (11.4) an area element in the Pn

A = -
dPn 6¢n

> o plane reads

Zrhn
Np

i

© 8p, N So,

invariant

which shows that the mapping (11.3) does not preserve area in the P plane. All

successive points of a trajectory described by (11.7) lie on an ellipse with area

(11.9)

m |a|? sin u ; by (11.9) this area is related to the adiabatic invariant action J through

Since from (11.6)

we obtain, using (11.5):

2thn| h
Np T 2nJ
s S

-1 Ko \2 v 2 K -2
jaj2 = 2y &b | 20 Koz(l——°) e (1—-3)2
s | Npg 4 S| Npg eVeg'ls) 4
hence
laj = /23 Zn hn fo-E
RZ m v - eNVg'(o) 4 (11.10)

This expression generalizes the expression (10.1) of &

equations.

to the case of finite difference
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12. PHASE DISPLACEMENT ACCELERATION

Empty bucket sweep

For a fixed harmonic number, the RF frequency determines the synchronous revolution

frequency or, because

Sp _ 8wy
n - ’
PS wo

the synchronous momentum of the particles. Let w, and w, be two revolution frequencies
located on both sides of the central revolution frequency wg of the stack, well outside the

stack, with w; corresponding to a higher momentum than the stack (Fig. 12.1).

W, Sp
o Ny
' N
welD m dz)" stack
¢1//4§§::§¢:>
0, N/
NEDZAN

Fig. 12.1  Sweeping an empty bucket through the stack, from w;to w, (n< 0).
With r = sin ¢4 < 0, particles move upwards around the bucket
(when T changes sign, all ¢'s change sign).

’RF

huw,

hw,

Fig. 12.2 Variation of RF frequency with time (n < 0).

If the RF frequency is varied from hwj to hw, (Fig. 12.2), an empty bucket is moved
completely through the stack in the direction of decreasing p; because phase space is
incompressible, the average position of the stack is moved upwards by a quantity equal to
(Bucket area/Horizontal axis period). Therefore, according to (9.8), the average momentum

of the stack is increased by

1
3
ﬁ% ;ﬂgﬁ - a(r) per empty bucket sweep (12.1)

Ap y_ 16
<moc> VA




- 140 -

Since this average momentum increase is small, in order to maintain the beam at
fixed radius the magnetic field BZ must increase so slightly during an empty bucket
sweep, that for all computations BZ may be considered as constant in time. Therefore,
the betatron electromotive force may be neglected in (3.15), which for any particle

reduces to

d eNvV .
RE‘% == sing (12.2)

In particular, the stable phase L of the empty bucket is determined by

R =—=-—T7T1 where I = sin ¢s <0 (12.3)

dwRFr.h%:hwo_.d_p_:hn Vs ir_)i
dt dt P dt RS P dt
Combined with (12-3) this yields
dopr hn eNV c \2 hn eNV
. .- <_> - r (12.4)
dt RSZ myg 2 R,/ v 2B

For normal acceleration in a synchrotron, where Bz increases noticeably with time, a

similar formula applies but with n replaced by 1/y? .

The method of phase displacement (Ref. 13) allows acceleration of a stack by an empty
bucket with a momentum height which is much smaller than the momentum spread of the stack;

this is in contrast with normal acceleration, where the momentum height of the bucket is

necessarily larger than the momentum spread of the bunch. Phase displacement acceleration
has been successfully used in the ISR to accelerate coasting beams from 26.6 to 31.4 Ge/c
(Ref. 14); it necessitated around 200 sweeps of 3 seconds each with a total voltage NV of

12 kv.
Momentum blow up

For any particle, the change in momentum is given by (12.2). Using the reduced time

(5.1) and the reduced Hamiltonian (5.5 ) yields

dt = K; dt* = Kl—(-ijz where y = 1/2H* + 2 sgn (n) [rcp + cos cp]
y

Therefore, during an empty bucket sweep the total change in momentum of a particle which

crosses the ¢-axis at ¢1 (see Fig. 12.1) reads
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-sgn (n)ooo (
. . 12.5)
Ap = 2 E—N—\[KIS—l-I—l-q’—d? where y=f2H*+25gn (n) [r¢+cos qa] >0
27R y
61
and 0 < ¢; < 2n excluding the interval (q:e,qau).

As a first approximation we shall consider H* to be a constant; with ( 5.3) this integral

becomes
_sgll (n)ooo
Ap = -2 sgn (nz/‘ h KZM where Yy = / -2 sgn (n) Lr(q;l - ¢) + cos ¢; - cos q>]
R y
61

which can be rewritten as

-sgn (n) .0

sin ¢ + do . (12.6)
J -2 sgn (n) [r(¢1 - ¢) + cos ¢; - COS ¢]

bp = -2 sgn (1) - < 2K, >
R

61

The ensemble average of Ap over the stack is given by (12.1) as
< Ap > = < Apgp > ¢ a(r) per empty bucket sweep (12.7)
where < Apgr > is the average momentum increase due to a stationary bucket sweep:

i hw h
2 ]6 0 8
mc==—K, — mc=-<K, — > (12.8)

27 B E ° ™
0

16
< Ap > = —
ST o

Y _eNV
hn 27 E
)

S

when using ( 5.4) and taking the average of the bucket area throughout the stack.

Referred to < APgp >» the momentum change (12.6) of an individual particle reads

-sgn (n)-e
sin ¢ - do (12.9)

<ApST> 4 / -2 sgn (n) - [r(cpl - ¢) + cos ¢; - cos q,)]
$1

The integral (12.9) converges when the upper limit of integration tends to »; but it must

be computed numerically. From (12.7) one must have

<S > =qa(I) where a(l) =0 for T| > 1 (12.10)
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which has indeed been verified in the case of a uniform particle distribution in phase

space (Ref.15). Detailed numerical computations (Ref. 15), confirmed by measurements, have
also shown that:

< (S - <S>)2 >

Q

r2 for ir| <1
(1z.11)

Q

=

3 -1
) + T for iT{ > 1.5

(

Therefore, after the n h empty bucket sweep, the mean square momentum spread of the stack

is given by

< (i%)z> - <<—8P->2 > +nr? [( fpﬂ)] ’ (12.12)

m C
[o}

Choice of T

The total number n of empty bucket sweeps necessary to increase the momentum of the

stack by an amount < Ap >wanted reads, with (12.7):

n = wanted _ T wanted (12.13)
Ap sweep a(l) < Apgr >
whereas the time needed for a single sweep is obtained from (12.3) as
_p . L < ZmR >, P
TSweep =F o ——gg;—— 2 [(ap)Stack + M (6p)bucket:] per sweep (12.14)

where F and M are safety factors which are taken as (Ref. 16)
1<Fx2 and 1<M510

With (9.7 ) and (12.8), the bucket height in(12,14) may be expressed as

1
- m . i 2 !
(8P)pucket = Y < Mpgp > | sin ¢ - ¢ cos ¢ where cos ¢ = |r]

In(12.14) this term is normally much smaller than (8P)g .. -

From(12.12) and (12.13), in order to keep the momentum blow-up small, one should take
r2

as small as possible. On the other hand, from (12.13) and (12.14), in order to keep
a(T)
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the total time n - Tsweep short, one should take |I| - a(r) as large as possible.
Since |T| + a(r) reaches a maximum for || = 0.4 , the best choice is certainly

|T| < 0.4 . These and other considerations (E. Ciapala: Ref. 2, p.217-220), based on the
effects of RF phase noise on particle diffusion and on the effects of a change'in the
empty bucket area across the stack (due to a variation of Ypp 8cross the machine

aperture) (Ref. 17) have, in the case of the ISR led to the choice

-0.3 <T < -0.1 with mostly r=-0.2

13. LINEAR ACCELERATORS

A linear accelerator may be considered as the limiting case of a synchrotron where

R » «» . The momentum compaction is zero:

and, from (3-3), 1

Therefore a linac is always below transition.

In a linac, the distance L between accelerating cavities becomes the cell length of the

accelerating structure:

_C _ 2mR is fixed while R+o , N»o (13.1)
L_ =
N N
w. w
h_RE_RE remains finite while R+, h+w (13.2)
R R
w v
o s
w w
g = 2rh _ 2vh | L = _RF L = kRF L - 1 where kRF = RE (13.3)
N 21R VS Bs ¢

is the RF phase-shift that must be provided between adjacent cells in order to keep the
the phase of the reference particle constant along the accelerating structure (This phase
shift should hopefully not be confused with the azimuthal variable 6 defined in section
3).

In contrast to synchrotrons, ®pE in linacs does not vary with time, and there are

no harmonics on the RF frequency, i.e.
gl¢) = sin ¢
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Moreover, linacs are usually designed so as to maintain the phase shift per cell ©
constant along the accelerating structure (which is then said to operate in the 6-mode);
in that case, as shown by (13.3), L/vs is constant along the structure: the cell length
increases with particle velocity.

Non-relativistic linacs

Finite difference equations

Dividing (3.11) by h , and using (13.3) in (3.-4) we obtain

By - o8, = eV {gle) - 8G9} (13.4)
w n 8y 1
- RE - - s 153 . i
8,1 - 80 = -7 Lo — Y = N kep L - 8 (13.5)
s By B Y B+l

where V is the peak RF voltage in a single cell.

This mapping preserves area in the (GEn , 6¢n) plane; in fact, the variable conjugate
SE E
to §¢_ is a.=° 8y_ . The equations above can be written down at once when we
n (.L)RP (A)RF n

observe that for any particle

En+l - En =eV - g(¢n) (13.6)
L 1 1

¢ -0 = Wpp ° 'e=kFFL - - == (13.7)

n+l n RF Vn+1 Bn+1 BS

Frequency of small phase oscillations

It is given by (11.8), where

w 6 6 1 eV cos ¢ 62 1 eV cos ¢

or 2 Zso _ s _ (_ s
SINT T 2) T F L, E 2 s k- LE (13-8)

RF BSYs 0 BsYe RF o

where V/L is the average accelerating electric field on the linac axis.
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Differential equations. Hamiltonian

Taking the distance s along the linac axis as the independent variable, one immed-

iately writes (13.4), (13.5) in differential form as

d _ v _ _ _oH ‘
iUl ) [gcqs) g(q»s)] T (13.9)
where Sy =y - g
d $ 3H
e R ST (13-10)
BsYs
Using (4.8 ) this system may be derived from the Hamiltonian
ev
H=- l'EBE- ()% + =7 | + G(o) (13.11)
2 .33 EL
BSYS o

where the potential energy reads, for a sinusoidal RF voltage:

T + G(¢) = ¢ sin ¢_ + cos ¢

Z+¢]) cos sing = - (sin¢ - PCOS ¢ ) + = COS @
2 s i ¢ 'S 2 s

Instead of the phase ¢ used in synchrotron theory, it is common in linac theory to use
the phase ¢ measured from the crest of the RF voltage. Since sgn(yg) = -sgn(n)-sgn(r),
it follows that @ is negative in a linear accelerator. o

E
The variable conjugate to ¢ is &y or, in the physical phase space, = ;9— . 8y
RF RF

therefore area is preserved in the (dy, ¢)plane.

Adiabatic damping of phase oscillations

The Hamiltonian (13.11) depends on s through g3 y3 , even if V/L and ¢s are assuned to
be constant along the linac. Therefore H 1is not exactly a constant of motion, and.the
curves H = constant with B3 y3 and V/L taken as constants are only approximate
trajectories.

In order to have a more accurate picture of the actual trajectories, it is better, as in

Fig. 10.2, to use a representation in the reduced coordinate (y,¢) plane. From (5.1) and
(5.4),

1 1
2 T2 2
CSE B eV g ey | T (13.12)

w

-1
Yy X :
RF o) 0 "RF
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where again we have used (13.3). In the (y,¢) plane, the trajectories look like the
bottom part (y < Ytr) of Fig. 10.2, where we recognize the familiar golf-club of low-8
linacs (Ref. 8; Ref. 9, p.27).

Relativistic linacs

They are built for B = 1, i.e. Yg =@ By (13.3) this entails that for 6
constant, L is constant along the linac: therefore the accelerating structure is exactly
periodic, with geometrical period L. Since vy is constant, the synchronous particle is

not accelerated, and

r=g(¢) =sino, =0

Since n >0 , ¢

s 0 at the stable fixed point.

Therefore the particles are accelerated inside a stationary bucket, but the reference

energy is at infinity.

Finite difference equations

Since Yg = ® , We can no longer use the system (13.4), (13.5); instead we must use

the system (13.6), (13.7) which reads, for any particle:

v -V g (13.13)
(o]

n#l " ™h

- L h L - [1-2 b 13.14
Spe1 T G T kRF L -1 where 5 = ; (13.14)

Bn+l

This mapping preserves area in the (Yn’ ¢n) plane; but like the mapping (11.1), (11.2), it
does not admit of any (smooth) constant of motion. In order to obtain an (approximate)

constant of motion, we must again go over to differential equations.

Differential equations. Hamiltonian

In differential form, the system (13.13), (13.14) becomes

oH
a9

d V
E=F1e® (13.15)
o

/
9o _ 1 | 1. S b
s kRF (B 1 5y where 8 1 N (13.16)
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Using (4.8) this system may be derived from the Hamiltonian

ev .
H=lgp (B-1) v + E;L + G(¢) (13.17)
where, for a sinusoidal voltage: G(¢) = cos¢ = - sing

If, as is often the case, the average accelerating field V/L is maintained constant along
the accelerator, H does not depend explicitly on s : it is therefore a constant of motion,

and the particle trajectories in the (§,¢) plane are the curves H = constant. By putting
with (13.3),

kg LE, 0 ' E, (13.18)
o

it is seen that (13.17) is proportional to the reduced Hamiltonian

H*=- (1-8)y + K-=+cos¢-=- ET:%S—:; + K+ cos ¢ (13.19)

which depends on a single dimensionless parameter K.
y - 102
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Fig. 13.1 - Longituainal phase space of a relativistic linac (¢s =0, Yg = ).
In the figure, K = 0.2 ; this value corresponds to the SLAC 3.2 km

electron linac operated at 20 GeV (with 6 = 2n/31,
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Particle trajectories H* = constant are shown in Fig. 13.1. When y » «, ¢

approaches an asymptotic value ¢ _ given by

H* = K « cos ¢_ (13.20)

If H* > K , there is no corresponding real trajectory in the vy , ¢ plane.

If -K < H* < K, the trajectories are asymptotic to a line parallel to the y-axis at ¢_ ,

with 0 < ¢ <.
If H* < -K , y reaches a finite maximum at ¢ = m .
All trajectories are symmetrical with respect to ¢ = 0 and have period 2w in ¢ . The

particular curve which corresponds to ¢_ = m separates the bounded and unbounded

motions: it is thus the separatrix; at the same time it is an actual trajectory, because

the bucket is stationary and K is assumed to be constant.

; phase
In (13.15), (13.16), the variable conjugate to ¢ 1is vy or, in the physicalkspace,
E E
—— = —— - v ; therefore the particle motion preserves area in the (y,¢) plane.
w w
RF RF
In order to reach high energies, particles are injected with initial conditions such that

m
L
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APPENDIX A Synchrotron frequency in a stationary bucket with a harmonic cavity

©

. a
g(¢) =Z a  sin (n¢) G(¢) =Z n_n cos (ng¢) with a; =
n=1

n=1

Canonical equations:

& = sen () (r-gm)
d _
-y

Differential equation for ¢:

o _ sgn (n) (P - g(¢)> =0
dt*2

For a stationary bucket, T = 0 and this equation reduces to

2
4% sgn (n) E a_ sin (n¢) = 0
dt*2 7"
n=

Let 1p=¢-¢s ; then

&y e =
ol + sgn (n)z a cos (ncps) sin (ny)

Putting n=1
¢, = sen (n) - a, cos (nzps)
we finally have
d2y . B .
— + c sin (ny) =0 with c; >0
dt*2 1 n
n=

1

(A.1)

(A.2)

Depending on the origin of time, the solution of (A.2) may in specific cases appear as an
even or an odd function of time. Let us assume that it is an even function of time, then

we may write the solution of (A.2) in the form

0
Yy = a  cos (mt) where T = w*t*
m=

hence

©

a2y _ 2 Z 2
; = T Wt . n* o cos (mt)

m=0

(A.3)

(A4)
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Using the expansions
+00

oJzsine _ Z J @ %)=
p
p:—m

ejz cos 6 _ 2: jp Jp(z) ejpe

p:-oo
we obtain
v n oJn o cos mr

m=0

[ +oc0

- P Jjpmt

nz j Jp (n ozm) e
m=0 p=-=

Z nJme (na)eJTZmp
Emp

where Pn is a full set of integers (from -= to +=) corresponding to m.

Combining (A.4 ) with (A.2 ) yields

w*2 . Z r2 a_ cos (rr) = Z c, sin (ny)

r=0 n=1
=ch1m Z nJme (na)[cos(r):mp)+jsin(r§lmpm)]
n=1 Zm Pn
Let < oc
Zmpm=ir and me=q (A.5)
m=0 M=o

By changing Py into -p, We see that all sin-terms disappear; we are thus left with

w*2 12 o Z: ZC J Jpo (noto) Jp (nay) Jp (noy) ...

q odd = -» n=1 1 2

It is easy to see that iﬁ the (¢,¢) plane, a trajectory must be symmetrical with respect to
both axes; this entails that in (A.3), m =1, 3,...
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and (A.5) reduces to

p1 *+3p3 +5ps + ... = FT
(A.6)
pr*P3+tpPst ... = Q
hence + 1 -q=2p3 +dps + ... is even.
Since q must be odd, r must also be odd and we are left with
+00 4 o0
z ; -q-1 %22 A.
Z c, J Jpl(nal) JP3(na3) Jps(not5) e =w*rtal (A.7)
q odd = -~ n=1
r=1, 3, ..
In the following, we neglect terms of order a5 and higher; this amounts to taking
Ps =p; = ... =0 and to putting Jo(nas) = Jo(na7) = ... =1. Then (A.6) reduces to
Py *+ 3p3 =tr
Q=py +P3=*T - 2py

Changing P, into P, changes +r into -r but leaves the summation in (A.7) unchanged.
Therefore, it is sufficient to keep +r only if one introduces a factor 2 in the left-hand

side of (A.7).

pp +3p3 =1 with q=1-2p;3

Then (A.7) becomes successively

«© +o

Z “n ZZ ('1)p3 Jl-Spg(ml) JPa(m3) Tt
=1 ps = -=

o

Z Cn 2 [Jl(nul) Jo(n0l3) - J2(na1) Jl(n(l3) + Jq(na]) J1(110L3) - Js(ndl) Jz(naa)

n=1

+ J7(noy) Jo(nas) - ] = w*2 q
. Jp(ney) . J) (nas)
n CI] 2 —— JO(TIOL3) -2 [Jz(nal) - Jq(nal)J -0 (OLlL’ . 0L32) = w*z
n=1 Noy no,

(A.3)



- 153 -

p1 +3p3 =3 with q=3 - 2p3
Then ( A.7 ) becomes successively

-] +00
1_
Z c, 2 Z (-1)~7P3 J3ap, (m01) I (nas) = w*2 32 g
n=1 P

3= -0

© +oo
ch 2 Z Jap(nozl) Jp+1(na3)
n=1

p===

=ZCn Z[Jo(nal) JI(HOL3) - J3(Il0ll) Jo(na3) + Jg(n(ll) Jz(notg) - Je(notl) Jl (1’10‘3)
=1

2
+ J6(na1) J3(HOL3) - ...J = 32 w* . a3z

2J; (na3) J3(na;)
Z n <, { R [Jo(nal) - Je(m‘l)] -2 Jo(m‘s) - Jz(na3)]

No g na g

2
+0 (0,5, aj?) } = 32 y* (A.9)

Keeping only the first terms in ( A.9 ) and ( A.8 ) yields

©

Js(nal) 2
Z ne {Jo(ml) -2 + 0(0,5) + 0(as?) } =32 4* (A.10)

nog

n=1

o

Ji(na;) oy
Z n Cn { 2 - Jz(nal) + 0((116) + 0(&130.3) + 0(0‘32)}

no; no

2
* (A.11)

"
€

n=1
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In particular, by letting o; - 0 in (A.11 ) we obtain

©

2
Wt = Z nc (A.12)

n=1
Combining (A.10 ) and (A.l1 ) yields
- 2 2J1(na;) 5 a3 J3(nay)
Z ne ¢33 — - 3 — Jy(nay) - Jo(nal) + 2
n=1 no g o] nas
+ 0(21®) + 0(a%a3) + 0(a3?) } =0
2 Ji(noy) a3 2 o1 Jz(noy)
Z n Cn 3 2 - Jo(nal) -—3 Jz(l’lotl) +— 2
n=1 nNay o) a3 na,
+0(a;®) + 0(0y303) + 0(0‘32)} =0
o3 2 Jy(noy) PR P —
- — nc, 3 -2 - Jo(nal) +<—> 3 Z nc, Jy(nay)
*1 p=1 noy 1 n=1
\ , v )
—~— v
B A
J3(na1) a3
- Z nc, 2 = | 0(018) + 0(a13a3) + O(asz)] = (A.13)
n=1 ney .
© —
Y~
C
Because
Jv =)
ZV X - J‘V'l (X) + Jv+1 (X) ’

it is seen that:

A=33+C+ 0" = 0(a12) while B = 0(1)
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Solve (A.13 ) for a3 / a;

Q

a _ N BC
3 _ 2C C - [ 1+ 0(a16)] - L [ 1+ O(al“)]
B

o1
B + /B2 + 4AC g Ac BT AC
B

BC 24-1
= e — + o = -Q + ﬂ . +
B2 + 332 [l ¢ 16)] B [1 3(B ) ] [l O(aIG)]'

Finally

©

Z Cn 2 J3(not1)

- 29 -1

ag = - — = 1+ 3<£> 1+ O(ale)] (A.14)
Jl(nal) B Jd

)

nog

The synchrotron frequency is then obtained as a function of

TR D

m=1,3,...

by using ( A.14 ) in ( A.8 ) and remembering that a3 = 0(-a3).

Remark: The series ©

y(t) = E . C€Os (mr)

m=1,3,...
is equivalent to
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APPENDIX B Bucket Area o(l)

From (9-1), I = sin ¢ = sin ¢, |T| = cos g
Put ¢=-Sgn(n1")’(¢'¢u)>0

From (9-4) and (9-5),

¢
2
a = - —sgn (nr)
16
¢u

e

/7/- sgn (n) [F¢u+cos ¢u] + sgn (n) [F¢+cos ¢] - d¢

AN -

v

- sgn (n) cos ¢, [1 - cos w] - [rw - sin ¢ sin w]

= |sin <ps| (1 - cos y) - cos e (¥ - sin y)

Therefore
ERON ,
o =2 f /2—/|Sin‘/’5| (1 -cos ¢) -cos o_ (p -siny) « dy
16 S
0
or
b=l -0,
1 .
a=7/cos¢s f d%-sm‘g /Itgy’sl—t (8.1)
¥=0
where
t = p - sin y
1l -cos vy
As a series in vy,
t =¥, v’ + v + v’ + v? + 691 il .. (8.2)

3 2.5.9 2.4.5.7.9 33.42.52.7 33,42,8,7.9.11 3°.4%.53.72.11.13
Inverting the series (B.2) one obtains
2 4 2 6
Ji:it 1_i(é) + z.3 (_St) _._____2 -ét
2 2 3.512 52,7 \ 2 3.53 | 2

, _2.1103 ( 3 ) 8 22,7171 3 ) 10 (8.3)
—_— =t - =t + o
32,53,72,11 \ 2 55,72,11.13 | 2
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For t=tge, this relation yields v = ¢e - ¢ as a series in tg L converted into

u
a series in ¢ it reads

29 s . 13.17 7. 346943 0% e )
27.33.53,72.11 °

From (B.4) one can derive the faster converging expression (9.2).

From (B.3) one can write

- ¥
1 cos2 71§

1
Rl
—_—
[SSY [
S——
N

1
|b~x
- ~
—_—

of

L 2 6
o) " el (39)

3.1783 (3 .\ & . 3°.(2791423) (3 .\ 10 _
N (t) ¥ TIT 527 (zt

= a t (B.5)

by definition of the an's . Using this expansion transforms (B.1) into

t=tg ol
1
a=7/cos<ps / d(l—cos%) Htg‘psl-t
t=0

t=|tg ¢ |  Itg eyl

+ (1 - cos %) de

J 2fltg | -t

t=0
(¢} =‘l VCOS¢ R —
2 s Nio on | - ©
n= ’4’ 2 ltg ?5‘ -t
i n
n+} X -3 n+; I'(nt+l 3
[tg oo | * / S (-0 de=Jtgg ]t fntl) ris)
0 2r(n + 3)
(1)
- n+j n
Itg |

(3)n
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hence

- ey,
a =% / |sin el Z a —;—E (tg ¢s)n (B.6)
n=2,4,.. (?)n

where the an's are given by (B,5).

sin2-¢
With tg? P = —_— , (B.6) can be converted into a series in sin? Pyt
1- sin?e
5 S
5 2 3
W =3 Isin e, 2 [1 + 2 g2 0, + 22.37 _iou o, + 2°.13.347 .6 0, 5.7)
10 5 72,13 52,72.11.17
L 5
, 20.(490487) . g o+ 25.(100403329369) sinl%s N ]
53.73.112.13 S 56,73,112,132.17.19

and then to a series in ¢ 52:

5 Pz 12 Qg | 4 ps) 6
“(‘Ps)=§'|“’s|2 [1_L (__g) , 1607 (_s_) . 939031 (_E)
10 3.5 42 2.3.5.72.13' 2 2.37.52,72,11.17\ 2
397918669 ( s )8 R 240180071548099 ( fg) 10
28.32,53,73,112.13 2 23,32,56,73,112,132,17.19\ 2
+ .. ] (B.8)
Ps\ M . . . . m
Cut after| — , this expression yields at the worst point for convergence(v’s =3 ):
2

a (%) = 0.919262 instead of the correct value 1 .
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BEAM-BEAM EFFECTS

L.R. Evans and J. Gareyte
CERN, Geneva, Switzerland

ABSTRACT

The beam-beam interaction imposes severe limitations on
the performance of c¢olliding beam storage rings. In
linear colliders the self-pinching effect of the beam-
beam force can enhance their perfomance.

1. INTRODUCTION

Particles circulating in a colliding beam storage device experience
localised periodic kicks when crossing the opposing beam. As the intensity
increases, this beam-beam interaction has a profound effect on the beam
dynamics, wultimately 1limiting the performance of all existing 1lepton
storage rings as well as the SPS hadron collider. It is therefore not
surprising that a great deal of experimental, theoretical and
computational effort has gone into trying to understand the underlying
physics.

For 1lepton machines, computer simulations have been particularly
productive in understanding and predicting machine performance limitations
due to this effect. In contrast, in hadron colliders computer simulation
is hampered paradoxically by the conservative nature of the beam dynamics
and one has to rely more heavily on approximate analytical models based on
the theory of nonlinear resonance effectsl" 5].

In the near future the first linear collider will be
commissioned6]. Although the beams only pass once through one another, a
very strong beam-beam interaction, commonly known as beam disruption, will
occur. In contrast with storage rings this disruption has a potentially
beneficial effect, strongly focussing both beams and increasing the
luminosity by a substantial factor.

2. THE BEAM-BEAM FORCE

We consider first the simplest case of head-on collisions between two
round Gaussian bunches of length L with n particles per unit length and
with a transverse density distribution

2 2
znez e T /20 ) (2.1)
o

p(r) =
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The Lorentz force on a test particle at a radius r is

F=e(E+2vxB)=ce(E, ¢ BcB¢) er (2.2)
where the negative sign corresponds to a particle in the same bunch and
the positive sign to a particle in the other beam, r is the unit vector.

The radial electric field Er and the poloidal magnetic induction

B¢ can be obtained from Gauss' theorem and Ampére's law respectively.

r
errF.r = % J 2wr' p(r') dr!
o o
so
2 2
ne -r° /20
e = Znre, O ) (2.3)
errB¢ =W, ofr 2wr'Bc p(r') dr!
and
neu Bc 2 2
_ o -r*/20¢°)
B4> = Sur (1 - e (2.4)
Then
2 2 2
ne 2 -r°/2c
Fr = anco (1 +8%) (1 - e ) (2.5)
The angular kick Ax' due to the beam-beam interaction is then given
by
2 2
ax! Ne o Lo X297, (2.6)

= 2w €, Bc Bp X

where N is the number of particles per bunch and we consider only the
plane y = 0.
aAx" T

1 1 | I ] ] | | 1
V-4 -3 -3 -] I 2 3 4
X/SIGMAR

ol

Fig. 1 Beam-beam kick for a round Gaussian beam
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For the general case (ox # ay) the beam-beam kick can be obtained by
solving Poisson's equation for the generalised electromagnetic potential
of an elliptical bunch7]

2 2
- ( 2x + 2y )
200 + t 200 + t
ne 1 - e X Y
V(x,y) = dt . (2.7)

4ne 'V 2 R
(20x + t)(Zoy + t)

«©

The kicks Ax' and Ay' due to the beam-beam interaction are then

Ax' = -

1

and Ay' = -

@l
Q2

2.1 The Linear Tune Shift

For small amplitude particles, the beam-beam kick is identical to
that given by a linear lens of focal length f given by

]

1/¢F Ax'/x

Ne
4nc°Bch6’

Nr

o

= (2.8)

2

YO

where r  is the classical particle radius r_ = e’/(aneomoc’).

To investigate the perturbation of the lattice functions by this lens
we compute the perturbed one-turn transfer matrix

cos(u + An) B*sin(uw + Aw)

1 (2.9)
- E*sin(u + An) cos(u + Aw)
1 0 cos u B: sin u 1 0
= 1 . 1 . 1
- 2f 1 - B; sin u cos u - 2F 1

where u + Au and B* are the perturbed lattice functions.

Then

Nlm
mio %

cos(n + Au) cos u - sin u

cos u - 2wf sin u (2.10)



Nroﬁ
where £ = . (2.11)
awo’y
For small Awu,
~ du _
§ = T AQL (2.12)

where AQL is the linear tune shift due to the beam-beam perturbation.

The corresponding perturbation of the beta function is given by

*
= -2wf cot w . (2.13)

wll>
o *|®

2.2 Stability of Linear Incoherent Motion

In the linear approximation, the motion of a test particle in the
presence of the other beam is stable if the absolute value of the trace of
the one-turn transfer matrix is less than 2

cos u - 2w€ sin w <1

£ < 37 cot (w/2). (2.18)

T T T
03 - -]
Unstable
0.2 - -
13
0.l —
Stoble
o 1 1 L
(o} 0.5
©’ 2w
Fig. 2 Stability region for a weak beam executing

small oscillations. wu is the ©betatron
phase advance between collision points
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The experimentally measured limiting beam-beam parameter 1in lepton
machines is of the order of 0.03 to 0.05 and in the SPS hadron collider it
is an order of magnitude lower. The linear model clearly predicts a
threshold which is much too high.

2.3 Stability of Coherent Motion

For two beams of similar intensity, if one beam is slightly displaced
with respect to the other, coherent oscillations are induced which under
certain conditions can lead to instability 8 ’9]. With one bunch per
beam, two modes are possible, the O-mode where both beams move up and
down together, and the w -mode where the two beams move 1in opposite
directions. With m bunches per beam, 2 m modes of oscillation are
possible. The stability of the system can still be computed by linear
matrix theory. For the case of one and three bunches per beam the
stability boundary is shown in Fig. 39]. Clearly the threshold is
substantially reduced compared with the incoherent case, although for the
appropriate choice of working point it is still substantially higher than
experimentally observed thresholds.

T 0.25
03| /// //////
Unstable 0.20 - Unstable
02 - 015 F
13
0.10 -
Ol
() Stoble %% (o
Stable Stable Stable
0 1 1 1 1 o
0 Q 1 0 Q2 3
Fig. 3 Stability region for two strong rigid beams

executing small center-of-mass oscillations
for (a) two colliding bunches and (b) six
colliding bunches. The figures are periodic
in Q, the total tune of the storage ring;
the periods are 1 in (a) and 3 in (b). The
dashed lines show the strong-weak stability
limit and are reproduced from Fig. 2.

As can be seen from Fig. 1 the beam beam force 1is intrinsically
nonlinear above about 1.5 o. The nonlinearity has important consequences
on the beam dynamics. The effect will be discussed in more detail 1in
Section 5.
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2.4 Scaling of the Linear Tune Shift

For the general case of an elliptical beam with Gaussian distribution,
the tune shift parameter £ is given by

Nr e B*
14 = o .
X,y 2wy (ax + ay) Gx,y (2.15)

where B* is the value of the beta function at the interaction point. This
parameter scales differently with energy for hadron and lepton machines.

In a hadron machine the normalised emittance (eBy) 1is a conserved

quantity. Then putting
*

02 - (eBy) B
= ay

and assuming a round beam (cx = o0_), then
Nr
_ — P 2.16
¢ = Ty (2.16)
which is independent of both Yy and of the value of 8#* at the crossing
point.

For lepton machines the situation is different because the
equilibrium beam size scales proportional to y. The tune shift parameter
then has a strong Y” dependence. Consequently, in a machine 1like
LEP where the beams will be injected at low energy it is vital to separate
the beams completely during injection and throughout acceleration. In
addition, the beams are normally flat at the collision points so the tune
shift parameter also depends on the beta functions at the interaction
point.

2.5 Nonlinear Beam-Beam Interaction

In the preceding sections, only the linear part of the beam-beam
force was considered. In fact, the beam-beam interaction is an
intrinsically nonlinear phenomenon and this nonlinearity gives rise to two
effects. Firstly, it introduces a dispersion of the tune with amplitude,
the beam-beam tune spread. Secondly, the nonlinear kick together with the
localised nature of the interaction drives nonlinear resonances wherever
the machine tunes satisfy a relationship of the form

mQx + nQy = Integer

where m and n are even integers for head-on collisions between bunches.
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These nonlinear resonances can profoundly influence the topology of
the phase space. There is a great deal of evidence, both experimental and
from computer simulations, that shows that these resonances play an
important réle in determining the nature of the beam-beam interaction.

In the next two sections, some experimental data from lepton and
hadron machines is discussed. The physical manifestation of the phenomenon
turns out to be quite different in the two types of machine.

Lepton machines are in some ways both simpler and more complex to
understand than hadron machines. The tune spread is normally at least an
order of magnitude larger than in hadron machines, so the beams straddle
many nonlinear resonances and their synchrotron satellites. However, there
is a strong damping mechanism through synchrotron radiation emission to
counteract the beam-beam interaction, giving rise to an equilibrium
situation. This equilibrium is generally achieved after a few damping
times and renders the problem particularly suitable to computer
simulation. In the next section some results of computer simulations are
discussed and compared with real machine data.

In hadron machines the tune spread is sufficiently small that the
beams can be kept clear of 1low-order resonances. However, as the
experimental data will show, resonances of order 10 or even under some
conditions of order 16, have been shown to have a catastrophic effect on
beam lifetime at quite modest values of the beam-beam tune shift. There is
no, or negligible, radiation damping so an equilibrium situation cannot
exist as it does in lepton machines. This makes quantitative predictions
using computer simulation difficult, although considerable insight can
still be obtained from such simulations. However, for a more complete
understanding they must be supplemented by a more detailed analysis of the
nature of nonlinear beam-beam resonances.

3. EXPERIMENTAL AND NUMERICAL DATA FROM e®e~ MACHINES

The most comprehensive compilation known to the authors of data from
the world's lepton colliders can be found in Ref. 10. One of the most
striking features of this data 1is shown in | Fig. 3 of this reference,
reproduced below for convenience.

Figure 4 shows the luminosity versus current observed in seven lepton
colliders. The luminosity L is given by

Iz
L= ——— (3.1)
4uMe“f o_o
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where f is the revolution frequency, M the number of bunches per beam, I
the current per beam (assumed equal in the two beams) and ¢ are the

Luminosity [x 103%m™2 sec"]

X,y
standard deviations of the beam sizes at the crossing point.
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Fig. 4 Luminosity and vertical tune shift
parameter versus current for seven

electron-positron collidersl0], Note that
the tune shift saturates at some current
value above which the 1luminosity grows
linearly.

The behaviour of all seven machines is remarkably similar. At 1low
current, the luminosity increases approximately as the current squared, in
agreement with equation (3.1) whereas at high current the luminosity is
more proportional to I rather than I?. Even more striking, the upper
plots show the calculated vertical linear beam-beam tune shift parameter
Ey as a function of current. For a flat beam (oy << ax) Ey
is given by

Ir B*
o

£, = IrleFve s
Yy ZﬂMefyoxay

(3.2)

It can be seen that at high current, instead of the linear dependence
on current predicted from equation 3.2, the linear tune shift saturates at
some value between 0.02 and 0.05. This 1limiting tune shift is commonly
called the 'beam-beam limit'.

In order for oy to be constant, the product cxay must
increase linearly with current, In practice, the horizontal beam size is
observed to change very little and therefore, at the beam-beam 1limit the
vertical beam size must grow linearly with current. This is an important
difference between lepton and hadron machines. 1In ete” machines, at a
given current an equilibrium distribution exists which 1is a balance
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between the heating of the beam due to quantum fluctuations and the
beam-beam interaction and the «cooling due to synchrotron radiation
damping. The beam size has been observed to blow up by as much as a factor
of five before the lifetime is affected 11].

The fact that an equilibrium distribution is established in a few
damping times (10°-10° turns) makes the beam-beam problem 1in

e*e” machines particularly amenable to computer simulation.

3.1 Computer Models of the Beam-Beam Interaction

Computer simulations of the beam-beam interaction have been made in
practically all laboratories in which e*e” machines exist. The types
of simulation can be divided 1into two main classes, strong-weak and
strong-strong.

In strong-weak simulations test particles in the 'weak' beam are
tracked through a linear lattice followed by nonlinear beam-beam kicks due
to the ‘'strong' beam which itself is not perturbed by its interaction with
the weak ©beam. Therefore the ©beam-beam kicks can generally be
precalculated and stored in a look-up table with appropriate
interpolation. This method 1is economic in computer time but lacks
quantitative predictive power. However, this kind of simulation is useful
for studying the beam-beam interaction in, for example, the SPS collider.

More sophisticated simulations treat the strong-strong case, where
the changes in beam size and distribution are periodically wused to
recompute the beam-beam kicks as the calculation proceeds. This kind of
simulation can be used to compute the final equilibrium beam size and can
quantitatively predict the machine performances (luminosity, beam-beam
limit etc.) when the relevant physics is introduced into the problem.

Many different effects can be included in such simulations. In
general, as well as the transverse dynamics the longitudinal motion must
be taken into account. The synchrotron motion results in a modulation of
the arrival time of a particle at the interaction point producing a
modulation of the strength of the beam-beam force. This results in the
generation of beam-beam synchro-betatron resonances (Section § ) and can
sometimes strongly affect the performancelz].

Quantum fluctuations and synchrotron radiation damping are also taken
into account. In addition, small errors such as the variation in phase
advance between intersection points, small offsets between the beams and
spurious dispersion can all have non-negligible effects.
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Figure 5 shows one result from a strong-strong simulation at
CESR 13], where contours of constant relative luminosity are plotted in
the tune space. Areas marked with <crosses 1indicate regions of bad
lifetime. These regions are closely correlated to the location of

nonlinear resonance lines.
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2
9
o
E | «— Good
3
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O WP o, Yo
NI
9.0 9.1 9.2 9.3 9.4 9.5
Horizontal tune
Fig. 5§ Beam-beam simulation results for CESR13].

The contours are at equally spaced relative
levels of luminosity. Crosses indicate bad
lifetime. The straight 1lines define the
positions of strong nonlinear resonances.

Similar results have been obtained in simulations of LEP 12].

Figure 6 shows the computed luminosity as a function of the vertical tune
over a wide range. The regions of low luminosity are again strongly
correlated to large azimuthal Fourier harmonics of nonlinear resonances.
Note that these simulations have real quantitative predictive value.
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Fig.6 Luminosity (cm—2.,s-1) as a function
of the vertical tune over a wide range
computed for LEP12]. The regions of low
luminosity coincide with strong nonlinear
resonances.

Figure 7 shows a similar simulation for Petrald], where the

equilibrium vertical beam height is plotted as a function of both radial
and vertical tunes. The curves on the 1left correspond to a perfect
machine. Again, at tune values corresponding to nonlinear resonances the
beam height increases. The situation is much worse when small machine
imperfections are added, in this case small variations in vertical tune
between interaction points and spurious vertical dispersion. The result of
these 1imperfections 1is to excite azimuthal Fourier components of the
nonlinear beam-beam force driving resonances which would not normally be
present due to the symmetry of the system. The curves on the right show
how the number and strength of the resonances increases when imperfections
are added.

The predictive value of beam-beam simulations for lepton machines is
illustrated 1in Fig. 8. These curves were generated using the LEP
simulation codelz] modified for PEPlS]. The top curve corresponds to
the normal PEP working point QH = 20.175, QV = 25.275. The
experimentally measured luminosity shows good agreement with the
simulation. The program was then used to probe the tune space in search of
a better working point, which was found to be QH = 21.275, QV =

18.175. When the machine was tuned to this new working point (fig. 8b) the
luminosity increased as predicted by the simulation, by about 40%.
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4. EXPERIMENTAL DATA FROM HADRON MACHINES

At the time of writing, only two hadron colliders have operated, the
ISR and the SPS proton-antiproton colliders at CERN, soon to be followed
by the Tevatron proton-antiproton collider at Fermilab.

In the ISR the beams were debunched and crossed horizontally at an
angle so that in the horizontal plane there was almost no tune shift as a
particle was kicked first one way and then the other as it crossed the
opposing beam. The only substantial tune shift was in the vertical plane,
and this was much smaller (~4x10") than that obtained in the SPS
(~4x10'°). The ISR stacked beams on a working 1line which straddled
7th , 8th and 9th-order resonances (Fig. 9) with very little effect due to
the beam-beam interaction.

9.0
Q,
8.9

\

L \6 )
838 \i N \
88 8.9 Q. 9.0
Fig. 9 A typical ISR working line crossing 7th,

8th and 9th-order resonances.

However, the presence of nonlinear resonances could be detected by
exciting the beam and measuring the response (beam transfer

16]. Figurel0 shows such a measurement on a stack, first with no

function)
beam in the other ring and then with successively increasing current.
Depletion of the density distribution can be observed at resonant tune
values. The amplitude dependence of the tune spread has a stabilizing
influence. As the amplitude of a particle increases due to the resonances

the tune changes to push the particle off resonance.
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Fig. 10 Vertical beam transfer function measurement
of the amplitude distribution of beam 1 as
a function of the current in beam 2,
showing the beam-beam resonances of order 7
to 9.

The SPS proton-antiproton collider is more similar to an electron-
positron storage ring. The beams are bunched and collisions are head-on,
giving approximately the same beam-beam tune shifts in the two planes.

Very strong beam-beam effects are observed. Figure 11 shows a scan of
the tune diagram with three proton bunches and a single weak antiproton
bunch (6 crossings per revolution) and with a beam-beam tune shift on the
antiprotons of 3 x 10™° per crossing>]
recorder output of the intensity of one of the proton bunches together
with the antiproton bunch on a very sensitive scale. Figure 11b) shows the
tune diagram between 3rd and 4th-order resonances, where 7th, 10th and
l1l1th-order resonances are indicated.

. Figure 1la) shows a chart

The intensity decay rate was measured at different positions in the
working diagram, indicated by the 1lines marked 1,2 etc. The meaning of
these lines is the following. The proton bunch (with which the tune is
measured) has negligible spread and can be considered to occupy a point in
the working diagram indicated by the lower point on each line. The small-
amplitude antiprotons which experience the linear part of the beam-beam
force, are shifted upwards in tune by the total beam-beam spread and
occupy a point at the other end of each line. Large amplitude antiprotons
occupy much of the space between.
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The decay rate of the antiprotons is extremely sensitive to the tune,
increasing rapidly as the antiprotons touch the 10th-order resonances. In
contrast, the proton decay rate under these conditions where proton and
antiproton emittances were comparable, was quite insensitive to the tune.
In order to have reasonable operating conditions for physics data taking,
the tune must be restricted to a very small region of the working diagram
corresponding to that of point 1 in the figure. Therefore the beam-beam
interaction imposes severe constraints on machine performance.

One way to reduce the tune spread in the beams is to separate the
protons and antiprotons at the unwanted collision points (the SPS contains
only two experimental areas at adjacent long straight sections Such a
separation is possible in the SPS by making global orbit deformations in
the opposite sense for protons and antiprotons using a set of four
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Fig. 11 Scan of the SPS tune space between 3rd and 4th order

resonances with a single weak antiproton bunch and three

strong proton bunches.
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electrostatic deflectorsl7]. When the separation is switched on the beam

lifetime improves considerably (Fig. 12).

Fig. 12a Schematic diagram of SPS separation scheme.
The proton and antiproton orbits are
deformed in opposite directions.
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Fig. 12b Intensity decay of an antiproton bunch as
the separation is brought up.

Another important effect observed at the SPS is the self-scraping of
large emittance particles when the two beams have unequal emittances.
Figure 13 shows the decay rates of three antiproton bunches which were
injected with successively bigger emittance. The effect on the decay rates
can be easily seen. Antiprotons whose amplitude exceeds the average
dimensions of the proton beam are rapidly peeled off and the decay rate is
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ijnitially high. As a result the antiproton emittance shrinks during the
early phase of storage. The ‘'dynamic acceptance' of the machine in the
presence of the beam-beam interaction is therefore not much more than the
strong beam emittance.

’-l.l:
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] 1 ] ] |
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Fig. 13 Decay rates of three antiproton bunches with different
emittances. The normalized emittances E = eBy/w
where Ex = 17, Ey = 15, EZ = 12. The proton
emittance E_ = 16 and & = .004.

P

5. NONLINEAR BEAM-BEAM RESONANCES

The theory of nonlinear resonances in circular accelerators has been
treated elsewhere in these proceedings4’ 5]. Before applying the theory
to the beam-beam interaction, some of its general features will be briefly
reviewed. Detailed derivations are not given here. For these, the reader is
referred to Refs. 1-3 and 18-20.

The motion of a test particle in the presence of a nonlinear
perturbation is governed by the perturbed Hamiltonian

H=H +H

o 1

1, 2 2
2(px+p

y * Ke()x® + Ky(s)y®) + V(x,¥)8(s-s ) (5.1)

where the perturbing potential V(x,y) due to some nonlinear element at
azimuthal 1location s = s, is considered to be small. The '"time"
dependence of the nonlinear kick 1is 1introduced through the periodic
§-function having period 2w. Note that instead of the time coordinate
the azimuthal position s is used.
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2 ,18] is first to make

two successive canonical transformations, a Courant and Snyder

The general method of solving such a problem

transformation to remove the time dependence of the unperturbed
Hamiltonian Ho followed by an action-angle transformation. The
periodic & function is also replaced by a Fourier series expansion.

The next step, for the case of a single multipole is to isolate the
'slowly varying' part of the Hamiltonian when the tune 1is close to a
‘resonant' value nQ - p = 0. One finally arrives at a '‘resonant
invariant' (see E.J.N. Wilson's chapter for a detailed derivation) of the
form

K= (Q-p/n)J + A J™% o B "2 cos ¢ (5.2)
n n

where J is the action variable (Q/2 times the emittance of the orbit) and
¥ is the 'slow' phase. The first term in the above expression 1is the
distance of the tune from the resonant tune. The second term corresponds
to a variation of tune with amplitude, the nonlinear detuning, and the
third term is the 'resonance excitation' term.

The same procedure can be carried out for the case of the beam-beam
interaction. However, in this case care must be taken to isolate all the
slowly varying terms in the resonant Hamiltonian. These terms come about

because the beam-beam force can be decomposed into an infinite series of
multipoles. The resonant invariant is of the form

K = (Q-p/n) a + & u(a) + & Vn(a) cos ny (5.3)
where the action variable a has been normalised such that a = eB/202.

The tune shift due to the resonances is given by

=

y 2
36

&l

- (Q-p/n) + £ u'(a) + £V (a) cos n¥ . (5.4)

Here, Eu' (a) is the amplitude dependent tune shift, the
]
‘nonlinear detuning' and Evn(a) is the 'resonance width'. Note
that the linear tune shift ¥ appears as a scaling parameter.

The functions can be expressed as infinite serie53]:
© m-1 . m-1
u'(a) = % (“1)2m 1(2m). g (5.5)

1 2725 (m)?®
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(_l)m-l am—l

2m-2

(2m)!
m! (m + %)!(m _% )t

V;](a) = o§o . (5.6)

n/2 2

Alternatively they can be expressed in terms of modified Bessel

functionsZI]:
2 -a/2
u'(a) = . [1 - e Io(a/Z)]
o + 1
2 4 -a/2
Vpla) = (-1) s S I, (a/2)
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Fig. 14 The nonlinear detuning Fig. 15 The resonance width function
function u', with for resonances of order 4 to 12
o =xX2/202

In two dimensions the tune shift and resonances width depends on both
horizontal and vertical coordinates. The beam occupies a 'footprint' in
the tune space which is shown below for the case of a round beam.

Fig. 16 Nonlinear detuning as a function of x and Yy
amplitudes A = x/o for a round beam
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Given the resonant invariant 5.3, particle trajectories can be
constructed in the ‘'slow' phase space (a,¥). When this 1is done, it is
found that the phase space trajectories are stable to a very high value of
the linear tune shift. As an example, Fig. 17 shows the trajectories in
the vicinity of the 4th-order resonances for a linear tune shift £ =
0.04. A characteristic island structure can be observed at an amplitude at
which the perturbed tune is approximately equal to the resonant tune.

ac =B.738
DaL=0. 840
QS =0.808
*-DQM=8. 828

D B

Fig. 17 Phase-space trajectories in the vicinity of
a Ath-order beam-beam resonances for § = 0.04.

5.1. Resonance Overlap

The single-resonance model is clearly inadequate for explaining the
beam-beam interaction due to the fact that increasing the beam-beam tune
shift increases the destabilizing effect of the resonance excitation and
stabilizing effect of the nonlinear detuning proportionately. However, it
was first pointed out by Chirikovzz] that the working area is covered by
an infinite number of resonance lines for which the tune value is a
rational fraction. Although the high-order resonances have narrow width,
the fact that there is an infinite number of them may have a significant
effect. If they have sufficient width they overlap in the tune space and
particle motion will be unstable even if the working area is free of
low-order resonances. In Fig. 18 the particular case of the trajectory
in the vicinity of a 6th-order beam-beam resonance is shown at the very
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QC =d.625
DQL=8.02808
QS =0.000
DQM=0. 0800

Fig.18 Particle trajectories in the vicinity of a 6th~
order beam beam resonance for £ = 0.08.
At large amplitude the characteristic structure
of a 14th order resonance can be observed.

high value of the linear tune shift &m= 0.08. At large amplitude another
resonance of order 14 can be observed. If the tune shift increases even
further, the two sets of islands will approach each other, and other
high-order resonances will appear, finally leading to chaotic motion.
However, the linear tune shift required for this phenomenon to occur is
still much higher than observed experimentally.

5.2 Synchrobetatron Resonances

The fact that the beam is bunched can have a profound influence on
the topology of the transverse phase space. Particles performing energy
oscillations can experience a modulation of the transverse tunes due to a
number of mechanisms. In lepton machines with short bunches this can arise
due to the modulation of the arrival time at the interaction point,
resulting in a variation of the strength of the beam-beam kick. In hadron
machines a more important source is due to the small residual chromaticity
or a small ripple on the quadrupole power supply. Synchrobetatron
resonances are also excited by two beams crossing at an angle 23, 24].

Tune modulation at frequency Qm = fm/fr results in the splitting of a

nonlinear resonance leH+n2Qv=p into an infinite number of
sidebands

leH + anv =P + kK Qm.
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For a one-dimensional resonance of order n,the sidebands are separated
by Qm/n and reduced in strength by the factor Jk(né/Qm), where 6 is the
amplitude of the modulation. For small Qm’ these sidebands are very close
together and can give rise to resonance overlap and stochastic behaviour
20, 25] at a much lower threshold than in the static case, as we shall see
below.

5.3 Computer Simulation

Although the resonance invariant (5.3) can be modified to take into
account the synchrotron motion, a simple and powerful method of obtaining
phase space trajectories 1is through particle tracking. For a round
Gaussian beam the nonlinear beam-beam kick is given by

2 2 2
Ax' = 8nfo"x (1 - e~ T /20 )

*
B*r (5.7)
2 2 2
Ayl - .8150_1 (1 _ e—I‘ /26 )
B*r?
with r? = x? + y?2.
Transforming to new variables X = x/0, X' = B*x'/o we get the position

and angle of a particle on turn n + 1 from its coordinates on turn n

Xn + 1 ° Xn cos 2w an + iﬁ sin 2w an

i; L1 in sin 2w Q. + iﬁ cos 2m Q. - Ain o1
;n s 1" ;n cos 2w Qyn + gﬁ sin 2w Qyn

§; v 1" §n sin 2w Qyn + §6 cos 2w Qyn - A§n ‘1
Qn b1 = Qo + 6 sin (2w Qm n) .

This kind of transformation is called nonlinear mapping. The problem
of the stability of such maps is one of considerable current interest in a
wide range of disciplines outside the field of particle accelerators.

Now in order to observe the sidebands due to tune modulation the
correct timescale for the problem must be chosen. Figure 19 shows a plot
of the phase space for an unperturbed tune of 0.7 with a linear beam-beam
tune shift £=0.01, and a tune modulation frequency Qm=0.004. Here the
phase-space coordinates of a particle have ©been plotted once per



Fig. 19 Phase-space trajectories for an unperturbed
tune of 0.7 with & = 0.01, modulation
tune Qp = 0.004 and amplitude Q = 0.01.
Synchrotron sidebands of a 10th- order
resonances of order 2 (outer) to 8 are
visible at amplitudes corresponding to tune
values 0.7 + nQp/l10. The 7th sideband is
not visible because the Bessel function
goes through zero.

synchrotron period, revealing many sidebands of the 10th-order resonance.
In this plot, sidebands 2,3,4,5,6 and 8 can be identified. The 7th
sideband 1is not present because the Bessel function J7(106/Qm) goes
through zero for the parameters chosen. In this example the islands are

well separated and the phase space is stable.

5.4 Stochastic Threshold

The presence of synchrotron satellites enormously increases the
density of resonances thereby reducing the Chirikov threshold for



- 182 -

resonance overlap and stochastic behaviour. This threshold can be computed
from the resonant invariant by equating the island widths to their
separation. The threshold linear tune shift for stochastic behaviour is

given bys' 26]:

Qm 1
£ = n = . (5.7)
U"(a) V(@) J (nQ/Qy)

Figure 20 shows the ratio Qm/E as a function of amplitude for the
case of a 10th-order resonance.

oaf—

03[
Qm/¢
STABLE

UNSTABLE

oi

Fig. 20 Stochastic threshold as a function of
amplitude computed for a 10th -~ order
beam-beam resonance.

It is of some 1interest to compare this analytically computed
threshold with the results of a computer simulation. Figure 21 shows the
phase space trajectory of a particle with initial amplitude of 40 in the
vicinity of a 10th order resonance and with the very modest beam-beam tune
shift parameter ¢ = 1.5 x 10"® and a tune modulation amplitude 6
of only 4 x 10"*.The theory predicts that the phase space should be
stable when the tune modulation frequency 1is higher than 5.1 x 107°.
This agrees quite well with the computer experiment.

The most dominant sources of tune modulation in the SPS collider are
due to the wunavoidable small residual chromaticity combined with the
synchrotron motion and current ripple on the main power supplies. This
second source is particularly dangerous because it is at low frequency and
a great deal of effort has gone into eliminating it up to a point where
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the residual modulation is practically unmeasurable on the sensitive
Schottky system used to monitor the machine tunes (6 ~4 x 10”*). This
frequency dependence of the stochastic threshold may also have important
consequences for the very big hadron colliders under consideration at the
present time, where the synchrotron frequency is low.

6. BEAM DISRUPTION

This is an extreme form of the beam-beam interaction which will be of
considerable importance in single pass linear colliders 1like the SLC6].
For two beams of different sign (e+e') the electromagnetic fields due
to the beam-beam interaction produce a ‘'pinch' effect, where both beams

are focused. . Figure 22 27] shows a computer simulation of this effect.

Z/o7

Fig. 22 Pinch effect due to colliding bunches of
electrons and positionsZG].

The magnitude of the effect is normally parameterized in terms of a
disruption parameter D, defined as the ratio of the r.m.s. bunch length to
the focal length.

nr
Now - (6.1)
0‘x Y
nr o
so p - —&% | (6.2)
02
Y X
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Or, in terms of the beam-beam tune shift &

g

D = 4mf 7% . (6.3)

Lepton storage rings generally operate with az/B* ~ 1 and the

£ = 0.05, giving an effective maximum disruption parameter for a storage

ring of the order of 0.6.

In linear colliders it 1is of interest to operate at a substantially
larger value of the disruption parameter because the pinching of the beams
can result in a substantially higher 1luminosity. Figure 23 shows the
luminosity gain as a function of D computed for the case of the SLC. For
D ~ 5 this simulation predicts a factor of 6 improvement in luminosity.
For values of D above about 10 the luminosity gain starts to drop off as
the beams pinch each other so strongly as to start to defocus each other
within the length of a bunch.

0 1 | | | | |

0 10 20 30

DISRUPTION PARAMETER
Fig. 23 Luminosity gain in an ete linear
collider as__a function of the disruption
parameter D . For large D the beams are
so strongly disrupted that the luminosity

falls off.

7. CONCLUSIONS

Over the last ten years or so, a great deal of effort has gone into
trying to understand the details of the beam-beam interaction. For lepton
machines, computer simulation has proved to be a powerful tool. Simulation
codes have now been developed to the point where they have real predictive

value.

For hadron machines the situation is less satisfactory. Although it
has not been possible to produce a quantitative predictive model,
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analytical calculations supported by computer simulations have shown that
synchrobetatron resonances can reduce the threshold for stochastic beam
behaviour to a level where the beam-beam interaction has been shown
experimentally to play an important role. In future hadron colliders the
effect of the low synchrotron tune and the requirement of a non-zero
crossing angle at the collision points will have to be given serious
consideration.

In linear colliders a new beam-beam effect should manifest itself.
Hopefully the SLC will manage to get into a range where the physics of
this effect can be investigated experimentally.

* * *

REFERENCES

1] A. Schoch, CERN 57-21, (1958).

2] G. Guignard, CERN 78-11, (1978).

3] L.R. Evans, CERN 84-15, p. 319, (1984).

4] J.S. Bell, These Proceedings.

5] E.J.N. Wilson, ibid.

6] SLAC Linear Collider Conceptual Design Report, SLAC-229, (1980).

71 B. Montague, CERN 68-38, (1968).

8] A. Piwinski, Proc. 8th Int. Conf. on High-Energy Accelerators, Geneva,
1971 (CERN, Geneva, 1971),p. 357.

9] A. Chao, AIP Conf. Proceedings, 127, p. 202, (1983).

10] J. Seeman, SLAC-PUB-3825, (1985).

11] A. Piwinski, DESY 83-028, (1983).

12] S. Myers, CERN-ISR/RF/82-06,(1982).

13] S Peggs and R. Talman, Proc. 11th Int. Conf. on High-Energy
Accelerators, Geneva, 1980 (Birkhiuser Basle, 1980), p. 754.

14] A. Piwinski, IEEE Trans. Nucl. Sci., NS-30, p. 2378, (1983).

15] A. Hutton, PEP-Note-375, (1982).

16] 6. Guignard, AIP Conf. Proceedings No. 57, p. 69, (1979).

17] L.R. Evans, A. Faugier, R. Schmidt, IEEE Trans. Nucl. Sci. NS-32,
P
E
p
A

2209, (1985) .

18] .D. Courant, R.D. Ruth, W.T. Weng, AIP Conf. Proceedings, 127,
294, (1983).

19] Jejcic, J. Le Duff, Proc. 8th Int. Conf. on High-Energy
Accelerators, p. 354, CERN(1971).

20] J. Tennyson, AIP Conf. Proceedings, 87, p. 345,(1981).

21] M. Month, BNL 19533, (1975).

22] B. Chirikov, Physics Reports, 52, p. 263, (1979).

23] A. Piwinski, IEEE Trans. Nucl. Sci. NS-24, p. 1408, (1977).

24] A. Piwinski, IEEE Trans. Nucl. Sci, NS-32, p. 2240, (1985).

25] E.D. Courant, ISABELLE Tech. Note 163, (1980).

26] S. Peggs, Particle Accelerators, 17, p.11,(1985).

271 R Hollebeek, Proc. Beam-Beam Interaction Seminar, SLAC-PUB-2624,
p

165, (1980) .



- 187 -

SYNCHRO-BETATRON RESONANCES

A. Piwinski*)
CERN, Geneva, Switzerland

ABSTRACT

The three most important mechanisms for exciting a coupling
between the transverse betatron oscillations and the longi-
tudinal synchrotron oscillations in a synchrotron are des-
cribed. The first two are single-beam effects arising from
dispersion in accelerating cavities and transverse fields
which vary over the bunch length. The third mechanism is a
beam-beam effect seen in colliders with a finite crossing
angle. The general resonance condition requires the sum of
integer multiples of the transverse and longitudinal tunes
to be an integer and the resonances are called synchro-
betatron or satellite resonances. The later name arises
since the synchrotron tune is much smaller than the beta-
tron tunes and hence the resonances appear as satellites
close to the simpler transverse resonances.

1. INTRODUCTION

Synchro-betatron resonances or satellite resonances are excited when the synchrotron
and betatron frequencies satisfy the relation

kQ, + 20, + mQ = n (1)

where k, g2, m and n are integers and Qy, Q, and Qg are the betatron and syn-
chrotron frequencies in units of the revolution frequency.

We will discuss here the three most important effects which excite satellite reson-
ances. The first one occurs if there is a dispersion in an accelerating cavity.
This effect was first observed in NINAL) and later on in SPEAR253)  and
PETRA*). The second effect is given by transverse fields which vary in the Tongi-
tudinal direction over the bunch. The transverse fields can be produced in the cavi-
ties by the accelerating voltages) or by the bunch itself®). The fields produced
by the bunch and by the dispersion 1imit the currents in PETRA4).

Finally a third effect arises from the beam-beam interaction when there is a crossing
angle. This effect has limited the currents in DORIS I 7,8), and it played a
role during the design of HERA9), the ep storage ring now under construction.

*)  On leave from DESY, Hamburg, Fed. Rep. Germany.
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2. DISPERSION IN A CAVITY

For each particle with an arbitrary energy deviation there exists a closed orbit that
is given by the product of the dispersion D times the relative momentum deviation or
approximately, the relative energy deviation:

Xe 0. () =D (2) 5=~ D (2) F - (2)

Around this closed orbit the particles perform betatron oscillations. The dispersion
can be horizontal or vertical and we can consider horizontal or vertical betatron
oscillations. In the cavity the energy is changed and therefore the closed orbit is
shifted (gee Fig. 1).

x>

X

o

)
N

AE
D%

Fig. 1 Change of betatron coordinates in a cavity

Since the total coordinate x cannot be changed in such a short interval, the betatron
coordinate is changed:

8E el | 2n .
6, = -0, g =-D ¢ [sin (¢+ 3 s) - sin ¢] (3)

with e = elementary charge, U = cavity voltage, ¢ = synchronous phase, A = wave-
length, s = longitudinal position.

In a similar way one obtains

8E el . 2n .
6x' = - Dy g = - Dy g [sin (¢ + 'Y s) - sin ¢] . (4)

We take into account only that part of the energy change which varies with the
synchrotron freguency. The other constant part which replaces the radiation losses
dces not play a role for a resonance.
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Equations (3) and (4) show that there is a coupling from the synchrotron oscillation
to the betatron oscillation. But the synchrotron oscillation is also influenced by
the betatron motion. The synchrotron oscillation can be described in terms of the
relative energy deviation AE/E and the longitudinal position s. The longitudinal
position is changed in the curved sections of the machine. The change of s per
revolution is given by

E
(x + D, £) d2 (5)

o |+

8s = [

where o is the radius of curvature and dg is an element of the length on the design
orbit. Evaluation of the integral gives

§S=A1x+A2x'—aMCé—E (6)
with
A = - L (D, sin p, - F, (1 - cos p ) + Ayg!/2)
By = X X X X X
A, = - Dx (1 - cos px) - Fx sin My
Py = DxBx = DxBy/2
where ., = betatron phase advance, gy = amplitude function, q, = momentum

compaction factor, C = circumference.

x and x' refer to the beginning, D and F to the beginning or the end of the
revolution.

Equation (6) shows a coupling from the betatron oscillation to the synchrotron oscil-
lation which is caused by the path lengthening due to the betatron oscillation. If
we assume linear betatron and synchrotron oscillations we can find an exact solution
for the coupled motion. The phases p of the eigenvalues of the revolution matrix, on

the resonance Qy + Q¢ = n, are then given by 19)

24 g2
-(0y + FY)

BTy gt (1 - cos p) (7)

sin By “MCBx :

Equation (7) shows that an idinstability occurs, i.e. the amplitudes increase
exponentially, when sin py = 0. In this case we have a difference resonance, since
Qg = px/2n - n is always smaller than 0.5.
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The nonlinear satellite resonances, which occur for large synchrotron amplitudes,
can be investigated with the help of approximation methods10). Only one result is
given here. One can derive an invariant of motion which is determined by

o sz (E ) = const. (8)

x2 +

where x and AE are oscillation amplitudes.

Since m can be positive or negative [Eq.(1)], the betatron and synchrotron amplitude
can increase or decrease at the same time or they can exchange their oscillation
energy periodically. So an instability occurs again for a difference resonance,
whereas in the case of a coupling resonance of horizontal and vertical betatron
oscillation the difference resonance is stable and the sum resonance is unstable.
The reason for this different behaviour is the assumption that the particle eneray is
above the transition energy. Below the transition energy one has to replace the
momentum compaction factor oM by (amy? - 1)/(y% - 1). So below the transition
energy (amy? < 1) the satellite resonances show a behaviour similar to that of the
coupling resonances of horizontal and vertical betatron oscillations.

For most cases x2 is smaller than the second term in Eq. (8), and the change of the
betatron amplitude is larger than the change of the synchrotron amplitude.

Computer simulations were done with the following equations.

At the cavity:

x
1]
>
]
j=)
=

LTS R (9)
E ~ E
S+l T Sn

with

el 2
R=¢ [sin (¢ + KE s) - sin ¢] .
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Between cavities:

= coS an+1+BS'In B X

n+2 n+l
,  _ sinyp N .
Xnt2 T T T g el TGOS B Xpyg
Mnip 2B (10)
E -~ E
A, .
R N R RS I R |

The result of the simulations is shown in Fig. 2. With the larger synchrotron fre-
quency (U = 2.5 MV) the first satellite is stronger. With the smaller synchrotron
frequency (U = 0.5 MV) the nonlinearities of the synchrotron oscillation are
stronger and the satellites of higher order are strongerl®),

A

Ai[mm] (x°= 25 mm
E

AE-) =25-107
0

2 ’
10 - -
U=25 MV; v=3°

U=05 MV, ¢ =14°.

L —

(
(
pie

[—]
—
~N
)
o
c:lc:>*
w x

Fig. 2 Variation of the maximum betatron amplitude with betatron frequency
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3. TRANSVERSE FIELDS WITH LONGITUDINAL VARIATION

Transverse fields which vary in longitudinal direction inside the bunch can be pro-
duced by the accelerating voltageS) or by the bunch itse1f6). In both cases they
are caused by asymmetries of the cavities or by an asymmetric passage of the bunch.
The most important case occurs when the transverse fields are excited by an off-
centre passage of the bunch (see Fig. 3). Since very small displacements of the
bunch in the cavities can produce strong fields the excitation of satellite reson-
ances is hard to suppress especially during energy ramping.

displaced
1 beam axis
\ -

——
J / cavity axis

Fig. 3 Off-axis traversal of an r.f. gap

Figure 3 shows that the longitudinal distribution of the transverse kick is strongly
nonlinear so that satellites of high order can be excited.

The excitation of the satellite resonances can be calculated exactly only for the
first satellite of the integer, i.e. for QB t Qg = n. The transverse kick

sz' =— | (Ez + vBX) dt (11)

o |

with E;, By = electric and magnetic field and v = particle velocity, can then be
linearized and one obtains

82' =s %—j (— +v ) dt . (12)

The integral is taken along the path of the particle between two Timits where the
fields vanish. With Maxwell's equation

oE oF 3B

S dz ot



one obtains

e OF 2
6ZI—SE(Igz—dt+Bx|t)=AS (13)
with
g Os
'pfaz

If the transverse fields have a longitudinal gradient the longitudinal field must
have a transverse gradient, and that means that the betatron oscillation influences
the synchrotron oscillation. That part of the energy change which varies Tlinearly
with the vertical position of a particle in the bunch is given by

oF
o e Bs .
ETIE f 5z Y dt =

<
)

|

Az = Az . (14)

(@]
N

Equations (13) and (14) describe a linear coupling which can be investigated again
using the matrix formalism. On the linear resonance Q, + Qg = n the phases of
the eigenvalues of the revolution matrix can be written as

) A BzcomC )
BB s T2 47 Sin by (15)

where B,c is the amplitude function at the cavity. Equation (15) shows again that

the oscillation amplitudes increase exponentially on a difference resonance. Also
the invariant for the amplitudes given by Eq. (8) can be derived for the case of
coupling due to transverse fields.

Since the excitation by a dispersion and the excitation by transverse fields are
additive [Egs. (3), (4), (11), (14)] both mechanisms can amplify or compensate each
other depending on the phases of the dispersion and the orbit displacements in the
cavities. Figure 4 shows the compensation of the 3rd horizontal satellite in
PETRA*) with both a horizontal dispersion and horizontal orbit bumps in the cavi-
ties. The criterion for the compensation was the residual current which was left
when the horizontal betatron frequency was exactly on the resonance frequency. Since
most of the satellites are current dependent there is a residual current which is
obtained asymptotically after some minutes. At first an orbit bump in a cavity sec-
tion was varied which gave a weak maximum for the residual current. This bump was
left in the maximum, and another orbit bump was varied which was orthogonal to the
first one. It was also left in the maximum, and then two bumps in the large quadru-
poles near the interaction points were varied which produced two orthogonal disper-
sions in the whole ring, i.e. also in the cavities. After optimising these two bumps
a sharp maximum was obtained which now also occurred when the first bump was varied
again.
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A
L Tres
[mA)
3t
21
1F /‘)\\\®
"E:lmm
0 | >

Residual current as a function of two orthogonal bumps in the cavity section

L Tres
[mA]
3..
2_
]..
AD=10cm

n [ ] L

-

Residual current as a function of two bumps which produce two orthogonal dispersions
Fig. 4 Compensation of the horizontal satellite Qy = 25 + 3Qg with Qg = 0.058

Since the compensation of the satellites cannot be maintained during energy ramping
the synchrotron and betatron frequencies must be controlled and kept constant.
Figure 5 shows the working point during injection and energy ramping, and with beam-
beam interaction at high energy. The maximum currents could be injected and ramped
when the horizontal betatron frequency was exactly in the middle between the first
and the second satellites and the vertical betatron frequency was between the third
and the fourth satellites. The distance from the resonances Qy - Q; = 2 and Q

+ 2Q, = 72 must be large in order to avoid dangerous coupling. In luminosity runs
the frequency spreads AQq and aQ, due to the beam-beam interaction could overlap
the fourth vertical satellite since the satellites are weaker at high energy and also
because they are weakened by the strong non-linearities of the beam-beam forces.

4. BEAM-BEAM INTERACTION WITH A CROSSING ANGLE

Figure 6 shows two bunches crossing at an angle of 2¢. A particle with a distance s
from the centre of its own bunch but without transverse displacement passes the
centre of the opposing bunch at a distance of sstan ¢ ~ s¢. The particle therefore
gets a transverse kick, and this means a coupling from the synchrotron oscillation to
the betatron oscillation since the kick, i.e. the change of the betatron angle,
depends on the longitudinal synchrotron coordinate s.
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y

+5Q;
234 + AQ,
! X,
4+
+4.Qg 2
: , _*_’ LV
final energie AQ, Y
233 + .
* oY
injection +30Q,
232 +
+2Q,
231+ Q,=23+Q,
g ~ - 3
m + + +
"
23.0 21y | 4 -
25.0 251 25.2 25.3 Q,

Fig. 5 Working point in PETRA during injection and ramping

particle

centre of bunch

Fig. 6 Beam-beam interaction at a crossing angle
If the particle has also a transverse displacement z the kick is given by
8z' = f(z + s¢) . (16)

The function f describes the space charge forces and is shown in Fig. 7.
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6z’

Z+so
o

Fig. 7 Dependence of the transverse kick on z + s¢

The synchrotron oscillation, however, is also influenced by the betatron oscilla-
tion. The change of the momentum is, in the case of a vertical crossing angle,
always vertical. This can be seen by transforming the two bunches into the reference
system where they collide head-on.

H0s
()

501 5p

Fig. 8 Resolution of the momentum change

The resolution of the momentum change gives

8Py = 06P, (17)
and the energy change is
sE  &p 8P 8p, .
E"p "p " tp T
and
5E
= of(z + s¢) . (18)

The complete coupling is now described by Egs. (16) and (18). For small oscillation
amplitudes the function f may be linearized and one obtains a linear coupling:

fz +56) = - g2 (2 + 50) (19)
z
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with
rerg;
T 2nyoyey (o, * e1)
_ /2 72
Ozef = Y0z * 0705

re = electron radius, N, = number of particles per bunch, g; = amplitude function

at the interaction point, y = particle energy divided by its rest energy, og» ox»
oz = standard deviations for Tlongitudinal, horizontal and vertical bunch
dimensions, respectively.

In the case of linear coupling one can apply again the matrix formalism and obtain
for the phases u of the eigenvalues’»>8)

b=y g *2nE + 2nEd (20)

Equation (20) shows again that an instability occurs on a difference resonance
(sin py > 0), and, in this case, also the invariant for the amplitudes Eq. (8) can
be derived.

To get an idea of the strength of this instability the rise times for the storage
ring DORIS I are given. The parameters are’): 2¢ = 24 mrad, g, = 0.01, ay =
0.018, ¢ = 288 m, p* = 1 m, Qg = 0.034, f, = 1.04 MHz. With these parameters one
gets a rise time of 0.3 msec.

For large oscillation amplitudes high order satellites of non-Tinear betatron reson-
ances can be excited. The most effective method for analysing these satellites is a
computer simulation. Figure 9 shows the result of a simulation for DORIS I. Between
the interaction points the betatron coordinates are transformed linearly and the syn-
chrotron coordinates are transformed taking into account the non-linear synchrotron
potential [Egs. (9) and (10) with D = 0, D' = 0]. At the interaction points the
transformation of z' and AE/E is given by Egs. (16) and (18) whereas z and s are
constant. The function f(x) is: :

0'2 - X2
f(x) = 8xg X5 (e 242 -1) (21)

which is exact for a round beam. ¢ is the standard deviation for the transverse par-
ticle distribution (¢ = 0.23 mm for DORIS I).
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Fig. 9 Maximum betatron amplitude as a function of the betatron frequency

Many measurements were done in DORIS I with weak positron bunches colliding with
strong electron bunches. The vertical betatron frequency of the positrons was varied
continuously by a computer whereas the synchrotron frequency was kept constant.
Simultaneously the current of the positron bunches was plotted. An example of such a
measurement is shown in Fig. 10 for one interaction point.

.1£= éZﬁk//z.

|

b i H

i 1 i
i
!

|

.

!

l
A
1 |

[ I

Positroncnstrom

H L : ¥
: 0427 | i 040
[ S P P . ;
' i
! | ! |
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The sharp losses yield exactly the frequencies of the satellite resonances. Because
of the very small width of the resonances and because of the speed of the variation,
the only resonances which could be observed were those which led to a lifetime of
less than 15 min. In several measurements with one interaction point the following
25 vertical resonances were seen.

6 + 3QS 6 + 4Q

49/8, ((49+Q,)/8, (49-2Q,)/8,
( )/7, (43-2Q,)/7

(37-Q4)/6, (37-2Q,)/6

31/5, (31+QS)/5, 31-20,)/5, (31£3Q,)/5, (31:4Q,)/5
25/4, (25-Q,)/4, (25-20,)/4

28-3Q,, Q,-1-Q,

43/7, 43+Q

37/6,

(
(

The width of the satellite resonances was measured for several cases. It is only
about 0.0005. This small width is caused by the strong non-linear tune shift of the
beam-beam interaction. If the oscillation amplitude increases the particle comes out
of resonance and the amplitude growth comes to an end. The frequency variation is
small only for large amplitudes and hence the amplitude can increase further.

The luminosity in DORIS I was limited by these satellite resonances. This ocurred
because in order to suppress multibunch instabilities an rf-quadrupole and a decoup-
ling transmitter were used to give different bunches different betatron and synchro-
tron frequencies and this always resulted in a loss of some of the 2 x 120 bunches.

In the first proposal for the e-p storage rings HERA, which is now under construc-
tion, a horizontal crossing angle was foreseen since it has some advantages over
head-on collision, e.g. less synchrotron radiation hits the detectors and the optics
for the two rings are completely independent. It was assumed that with a smaller
space charge parameter (¢ = 0.0006 instead of 0.0l as in DORIS I) and without spreads
in betatron and synchrotron frequencies a good working point for the protons could be
found. Computer simulations, however, have shown that in this case even more satel-
lite resonances would be excited®) and the crossing angle was abandoned.

One reason for the larger number of satellite resonances was the fact that the proton
bunch length was larger than the electron bunch length, and the proton bunch length
times half the crossing angle ¢ was larger than the electron bunch width (¢otg >
o"x). The ratio ¢ots/o"y is 4 in the case of HERA whereas the equivalent ratio
¢os/oz,eff is only 0.5 for DORIS I. This means that the synchrotron motion of
the protons covers more non-linearities (see Fig. 7) and more satellite resonances
are excited. Another reason is that even weak satellites with a rise time of several
hours become dangerous since there is no damping for protons.
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The computer simulations for HERA were similar to the simulations for DORIS I, but a
flat electron bunch was assumed (o7y/o"z = 15) and the function f(x + ¢s)
(Eq. 16) was calculated by using a table and by interpolating in a two-dimensional
gridg). The number of simulated revolutions was 50,000 instead of 2000 for
DORIS I. A result of such a simulation is shown in Fig. 11. The lower curve shows
the maximum of the beam width, i.e. the maximum of the average of the coordinates of
64 particles, and the upper curve shows the maximum amplitude which occurred during
the 50,000 revolutions for one of the 64 particles. The maximum initial amplitude
was 2.2 oyo-

X0
\ Xmax r X

|
| | |
4\ ,

st | ‘/Tj
; / Ao\ :

a
xq

4+ \ / 4}
\ I \ \
3r ‘\‘\_4’/ ] \ N 3t
1% \ Tt

2F \ 2F

1 /“‘“‘~’f:‘"Jr S 1

0 . O X

3.3598  3-3600  3.3602  3.3604 o 10

Fig. 11 Dependence of the maximum Fig. 12 Dependence of the maximum ampli-
betatron amplitude and the beam width tude and the maximum beam width on the
on the betatron frequency crossing angle

Figure 12 shows the maxima of the two curves in Fig. 11 as a function of the crossing
angle. A strong increase of the amplitudes begins with crossing angles of the order
of 2¢ ~ 207x/ctg, i.e. in this case with ¢ ~ 2 mrad.

The simulations have shown satellites of nonlinear resonances up to the order 11.
Figure 13 shows all satellites of the resonance Qy = 4n + 10/3 where n is an
integer. Only odd integers are excited. This follows from the antisymmetric distri-
bution of the space charge forces (see Fig. 7). If the resonance condition for the
betatron frequency is written as

p+rQg
U =—7q (22)
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then only those satellites can be excited for which the relation
r +q = even

is satisfied. This holds, of course, only if the centres of the two bunches col-
lide. Many satellites are also suppressed if the interaction points are equidistant.
If one takes into account that the crossing angles can have equal signs or alternat-
ing signs one gets the condition for the excitation of satellites

zl'c
"

integer  (equal signs)

even (alternating signs)

+
-
0]

where Nj is the number of interaction points. If, however, the betatron phase
advances between interaction points are different, i.e. due to machine errors, then
more resonances can be excited.

[
X0|
6 p o 10+rQg
p X * 3
9 5
r 4
> 4
p
, 4
: 3
: 2} by
ot I, : I e o
-25 -9 -7-5-3 11 3 6§ 7 9 —_—T 25
. . . o L A "
3-20 3.25 330 10 335 3-40 3-45
3 —_—Q

Fig. 13 Maximum beam width on all satellites of the resonance Qx = 10/3
( simulated, ------ estimated)
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BETATRON COUPLING WITH RADIATION

G. Guignard
CERN, Geneva, Switzerland.

ABSTRACT

This lecture deals with the analysis of the coupling of vertical
and horizontal oscillations, in the presence of electromagnetic
radiations associated with the acceleration of vrelativistic
electrons in a macroscopic force field. It explains how the Tinear
theory of resonances for proton beams circulating in three-
dimensional magnetic fields has been extended to radiating
particles. This analytical treatment gives the possibility to
predict the equilibrium mean-square amplitudes and emittances when
coupling and vertical momentum dispersion are included. The
application to electron rings with a separated function structure
and a large radius of curvature is presented.

1.  INTRODUCTION

The problem of betatron coupling with radiation is solved in this paper by applying
twice over the method of the perturbation of the constants. At first, the betatron
coupling is treated in the formalism of the classical Hamiltonian, the perturbation
consisting of the 1linear forces which couple both the transverse motions!s2?). In
contrast with previous work 3), Tongitudinal-field components are included as well as
the transverse ones. Using a complete set of canonical variables, the mapping of the phase
space is always symplectic, and knowing the solution of the unperturbed motion, the
equations of the perturbed one can be solved explicitely (Section 2). After this, the
effect of radiation and of quantum fluctuations are treated as time variations of the
amplitudes of the coupled motions*). Averages of these variations over a finite time
interval can be written in a general form (Section 3). Then, looking for stationary
conditions, it is possible to give expressions for the equilibrium amplitudes and
associated beam emittances, combining the two perturbation theories mentioned above
(Section 4). This analytical description of linear coupling in the presence of radiation
makes it possible to investigate the question of emittance control under particular
conditions (Section 5).

2. PERTURBATION TREATMENT OF LINEAR BETATRON COUPLING

2.1 Recap of the principles

The basic principles of the Hamiltonian formalism used in this paper are described
for instance in Ref. 1. If we call {q,, Pols with o = 1,N, the canonical variables and
8 the independent variable (angle at the machine centre), the Hamiltonians of the
unperturbed and perturbed motions can be written as Ho(p,q,8) and Hy(p,q,6), respectively.
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The equations of the unperturbed motion are well known :

. M . dHq

% = 3p, Po = -3, ° (2.1)

and the solution can be written formally as follows :
9% = 9o (aj9e) ¢ Pp T Pp (aj$e) s (2.2)
where aj are constants of the unperturbed motion.

In the presence of the perturbation H;, we look for the dependence of the quantities
aj on the variable 6, using the equation :

daj 9aj daH;  9H; daj
ot = lags Ml =1 (5850 - 30 30 )

de s (2.3)

©

the second equality defining the Poisson's brackets. Using Eq.(2.2), it is possible to
rewrite the Hamiltonian of the perturbation as a function of aj and o only,

Hy (p,q,0) = U (aj,8) . (2.4)

Hence, the equations of the perturbed motion are :

da au
o= = % [aj.an] 35, - (2.5)

2.2 Application to betatron motion

To describe the betatron motion, the canonical variables g and p are now replaced by
the transverse coordinates x,z and their conjugate momenta py, pz. The unperturbed
Hamiltonian is simply :

1
Hy = 5 [Ki(8)x® + K,y(0)22 + py® + %] (2.6)

where K; and K, are the horizontal and vertical focusing functions.

Since the equations of motion associated with Eq.(2.6) are of Hill's form, Floquet's
theorem applies and gives the explicit solution :

X =a;u exp(iQy6) + c.c.
px = ap(u' + iQyu) exp(iQy8) + c.c.
Z =ayV exp(iQz8) + c.c.
pz = az(v' + iQzv) exp(iQz8) + c.c. . (2.7)



- 205 -

where c.c. means complex conjugate and denotes the derivative with respect to 6.

Quantities u and v are the Floquet's functions :

u(e) =/ B;ée) exp[i(ex - Qx0)]

v(e) = s;ée) exp[i(oz - Qz8)]

Let us now consider the betatron motion perturbed by linear coupling associated with
a 3-dimensional magnetic field. In agreement with the equations for the coupled
motion!), the Hamiltonian of the perturbation is in this case :

=L (2Kxz - Mapg + Mepy + W22 L (2.9)

where K stands for the tilted-quadrupole field :
(o) = o (32 - 52 ) (2.%)

and M for the longitudinal (solenoidal) field :
M(e) = £ By - (2.9b)

Following the recipe of Section 2.1, Eq.(2.7) must be used to express H; (Eq.(2.9))
as a function U of the aj's (Eq.(2.4)) and then solved for these quantities; we get from
Eq.(2.7) :

A = W [ (u*' - iQeu*) x - u*py | exp(-iQy0)
(2.10)

a* = - qw [ (u' +iQqu) x - upx | exp(iQy®)

Similar expressions for ap,a* (* denoting the complex conjugate) are obtained by
replacing u and x in Eq.(2.10) by v and z, respectively.

The function W, sometimes called the Wronskian, 1is defined in the following
equation :

Wu) = u (u*' - 9Qqu*) - (u' +iQqu) u* . (2.11)

Given the form of the Floquet's functions (Eq.(2.8)), we have simply W(u) = W(v) = -i, and
Egqs.(2.10) simplify themselves accordingly. Introducing then explicitely Eq.(2.8) into



- 206 -

the complete expressions (2.10) for the aj's makes it possible to rewrite Eq.(2.5) for
our particular application to betatron motion :

da _, au_ dag _ 5 a0
de da* de day*
(2.12)
da* . au dag* . 3
d - " %a; de - " ' %a,

2.3 Solution in the presence of linear coupling

The perturbation Hamiltonian H; (Eq.(2.9)) is a quadratic function in y and py,
while these canonical variables depend linearly on the quantities aj (Eq.(2.7)) and
contain oscillating terms of frequency Qy (Eq.(2.8)). It results directly from these
facts that the function U associated with H; (Eq.(2.4)), has necessarily the following
form for linearly-coupled betatron motions!) :

2 oo ,
U(ay,a1*,a2,a2%,8) = j kEI 20 qz_m hjkimg a1dai*Kazla*m x
x exp {i[(j-k)Qx + (1-m)Qz + q]6} . (2.13)

An additional sum over the integers q appears in Eq.(2.13). It corresponds to a
development in a Fourier series of the Hamiltonian; -which is related to the periodicity of
the synchrotron or storage ring over the circumference.

The harmonic coefficients h contain by definition the magnetic characteristics K
(2.9a) and M (2.9b) as well as the Floquet's functions (2.8) and their derivatives with
respect to 6.

So far, everything is rigorous. Now we do the usual assumption that the Tow frequency
part of the function U (2.13) gives the important variations of the aj'sz). The
associated conditions, directly obtainable from (2.13), are :

a) Zero frequency terms (or stabilizing terms)
g = 0 with either j =k =0 and 1 =m-=1
k=1 and 1 =m=20

or J

b) Resonant terms (n,Qx + nzQz - p = 0)
q = -p with j-k=nand 1 -m
and ny = 0,1,2 and np = 2, %1, 0.

[}
b=}
N

With these conditions, the function U can be reduced to :
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U= hyjooo a121* + hgoi1o azaz* frequency shifts
+ higro-p 132 exp[i(Qy + Qz - p)e] + c.c. sum resonance
+ hygor-p ara2* exp[i(Qx - Qz - p)e] + c.c. difference resonance (2.14)
+ h2000-p a2 exp[i(204 - p)8] + c.c. ‘ -
2 one-dimensional
+ hoo20-p a2°  exp[i(2Qz - p)e] + c.c. resonances

We have derived!) explicit solutions for each of these resonances, including
simultaneously the frequency shifts. However, in order to simplify the present lecture, we
introduce now the two following assumptions :

a) The frequency shifts and the one-dimensional resonances can be neglected, since
the corresponding coefficients h are integrals containing the square of M (2.9b),
i.e. second order terms in the magnetic fie]dl);

b) The sum resonance can also be disregarded, provided that the working point is
sufficiently close to the difference resonance as in most usual cases.

In this context, the function U (Eq.(2.14)) restricts itself to the third term only
and the complete definition of the coefficient h, renamed « for the special case of the
difference resonances, becomes :

2w
1 MR , & o . MR (1 1
k= higo1p = 7R [ TBxBz [K+ 3 ( Ef - Ef ) -1 roide )] x
0
x exp [i(¢y - ¢ - 64)]do (2.15)

with & = Qg - Qz - p-

With all the assumptions made in this section, the effect of the perturbation due to
linear coupling is described by two equations derived from (2.12) by using (2.14) and
(2.15) :

%gi = jk*a, exp(-i6A)
(2.16)
gg& = jk a; exp(iea)

Transforming these two equations of first order into one equation of second order,
the general solution for the aj's can be obtained and written as follows :
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A A
a; = k¥ [;i exp (fwsd) + ;%-exp(iw_e)]

ap= [A; exp (iws8) + Az exp(iw_0)] exp(iea) (2.17)

with

2
mt:-%i’/(—A-] + ||

2

The complete solution is finally derived by introducing Eqs.(2.17) and (2.8) into the
solution of the unperturbed motion (Eq.(2.7)). At this point, let us define the vector
¥ whose components are the canonical variables (Eq.(2.7)), with
py = x' + Mz/2 and pz = z' - Mx/2. This definition allows us to write the complete
solution mentioned above as follows :

4
Y; =k£1 ij(e) Ay . j=1tod , (2.18)

where j is numbering the Y-components (2.7),
A, and A3 are the complex constants appearing in Eq.(2.17),
A, = Ay* and A, = A3*, and

= KX Bx exp[i(¢y + )],

wt 2R

Wy = 5/ SR (eay) exp[i(ox + 010)],

we " 28y

/8 .
wyp = v/ 55 expli(ez - m;e)],

33 2R
/ R . .
=y — (i- - w.0)], 2.19
Wﬁ; 28, (i-0z) exp[i(¢z we )] ( )

Wiz = Wji* o, Wiy = wi3* .
The two different subscripts of the w's are directly associated with the two indices
of w. The particular equalities between complex conjugate quantities are an obvious
consequence of the presence of complex conjugate functions in Eq.(2.7). The form of the

w-functions (Eq.(2.19)) implies that the following relations are satisfied :

ij(e+2n) = wjk(e) exp(i2mijk) (2.20)

with Ajz = '>‘j1 N XJ'L. = —)\J‘3 .
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The four groups of four w-functions defined by Eq.(2.19) can be regarded as the
eigenfunctions defining the four eigenvectors associated with the complete solution
¥ of betatron motion in the presence of coupling. It 1dis obvious from the
eigenfunctions (Eq.(2.19)) that the single-particle motions (Eq.(2.18)) contain fast and
slow oscillations associated with the phases by and w+8, respectively. As a result
from this, the coherent oscillations following a kick in one transverse direction have the
pattern represented in Fig.l 5,8).

Amplitude T

Plane perpendicular M \j / \\A Time
to kick
o kic “ P

Time of kick
|

Amplitude

Amin

RIS Fe ol

——
Plane parallel y VM Uy M Time
to kick .
e ~

S~—

Fig. 1  Coherent oscillations following a kick

3. AMPLITUDE VARIATION DUE TO RADIATION AND ACCELERATION

3.1 General expression of the amplitude variation

Coupled betatron oscillations, treated in the previous section by a perturbation
method, are in turn enhanced by photon emission and damped by the Tlongitudinal
acceleration as well as by the average energy Tloss in the presence of the focusing
component of the magnetic field.

Starting from the constants Ag of the coupled motion, we now look for their
variations due to these effects*). Assuming that these constants change slowly with
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respect to the quantum fluctuations and the period of the coupled betatron oscillations,
they will reach an equilibrium between excitation and damping after a few damping times.
It is precisely these equilibrium values of Ak which we want to derive in the following
sections.

It follows from Eq.(2.19) that the quantity F defined below is an invariant of the
motion :

F(wj7,Wik) = Wil Wak - W2l Wik * W3] Wuk = Wul Wk - (3.1)

As a consequence of the invariance of F and of the properties (2.20), we can write :

Flwji(e), wik(e)] = F [wji(e+2m), ij(e+21)] =

exp[i2m (Aj7 + Xjk)] F [wji(8), ij(e)] s (3.2)

and the equality between the first and last term of Eq.(3.2) (which can only be satisfied
if the exponential is equal to 1) induces the following orthonormality :

F(Wj],ij) =1 if Wyl = ij*
F(wji,wjk) =0 if wjy # wik* . (3.3)

This property of orthonormality can now be used to solve Eq.(2.18) for the Ay's. Let us
write indeed :

F(Yj,wik) =

: Al F(wj1,Wjk) = Ak* Fwjk*swWik) s (3.4)

ne-~1 e

1

making use of Egs.(2.18) and (3.3). Then we derive from the last equality :

F(Y‘,W'k*)
_ POV W4*)
A= Flwgowgi®) (3-5)

Since we want to look for the variations of the Ag's due to changes in the canonical
variables (vector 7), Eq.(3.5) is the key equation. In general, any variation of
\Ak|due to trajectory changes §Yj can be expressed as follows :

2 2 1 Cws
5|Ak| = A* SAk + AgSAg* + ‘GAk| = ORI {A* F(8Y5,wjk*) -
- A F(GYj,ij) - FTWE;%WEE;T F(GYj,wjk*) F(GYj,ij)} . (3.6)
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3.2 Application to photon emission and acceleration

Considering the photon emission, it is well known’) that the equilibrium orbit and
the betatron variables are changed by a quantity which is proportional to the photon
energy € and to the dispersion D, whose components are (Dy, Dyx', Dz, Dz') :

¥ =§—0 b . (3.7)

In the presence of longitudinal acceleration 8E in a cavity, only the transverse momenta
are changed while the transverse coordinates remain constant :

§
GV = (8x, 8Py 8z, sz) = (0, =-Px>» 0, ‘pz) E_E s (3.8)

Eg being the nominal energy.

Let us first deal with the orbit change due to photon emission. Since §Y is
proportional to e (Eq.(3.7)) and since 8Yj appears linearly as well as quadratically in
Eq.(3.6), it is necessary to evaluate the average <e> and the mean square <e2> of the
quantum emission, over a time interval At, and to multiply both by the mean emission rate
N. We will now consider successively these two terms :

a) If Py stands for the rate of loss of energy by radiation, we have

N At <e>=%PYA£ . (3.9)
where AL is the path length interval and

PY=%recY3 1—2

A£=As(1+’;—x+£— .

The quantity l/p2 in Py is proportional to the square of the field B2. Taking into
account the possible presence of field gradients, we must develop B2 in a series for x and
z. Keeping only first order terms,

BZ
gz - 1+ Gx +Gz (3.10)
0
. _ 2 aBZ 382 2 aBz 3B
with S =52 Bzae “ By ) and Gz =g (gt v B gt )
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Regrouping all the first order terms in x and z which appear in the product PyAg, we

obtain :
Lopag=Lp as (1+0cex +¢ 3.11)
c Y T Mo xx + Cz2) > (3.
with Cx = 1/px + Gx and Cz = 1/pz + Gz. On the right hand side, Py, is

calculated on the central trajectory x = z = 0 with nominal field B.

Putting all these results together and replacing x and z by their development in
eigenfunctions (Eq.(2.18)), the expression we are looking for is :

4
NAt <e> = At Py, [1+ ] Ax (Cxwik + Cowak)] . (3.12)
k=1

b) If Q¢ stands for the mean value of the product N<ez>, we have simply :

Nat <e?> = AtQe (3.13)

with
55 2.6 ¢ 1

= — rohc E ==
2673 €0V 53

Qe

In the expression (3.6) for the amplitude variation, we still need to evaluate the
function F(8Yj,wjk) = €F(Dj/Ep,wjk), and the similar one F(8Yj,wjk*). This s
simple if we make use of the definition (3.1) :

F(Dj/Eq,wjk) = %;'(DXWZk - Dy'wik *+ Dpwyg - Dp'wzk) . (3.14)

Let us now turn to the question of longitudinal acceleration SE (Eq43.8)). For the
same reasons previously evoked, linear and quadratic terms in SE will be present in
Eq.(3.6). If the quadratic term 8E2 becomes negligible towards the limit At » 0, the
linear term averages to (using eigenfunctions again) :

pr = - —? py = - -—E—a—— 2 Wok (9) Ak . ‘ (3'15)

Introducing Eq.(3.15) in the linear terms of Eq.(3.6) and assuming logically that the
average <8E> must exactly compensate for the radiation loss, gives :

P, At
6|Ak|2acce1. = - gz |Ak2| . (3.16)
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Putting together Egs.(3.12), (3.13) and (3.14) into Eq.(3.6) for the photon emission
effect and adding the contribution (3.16) of the acceleration, we can derive the following
expression for the amplitude variation :

P, At
<6‘Ak|2> = - —%;— |Ak2|

2
 Pyat | A |
Eo  Fwjk>Wik*)

29 <Im[ (Cywy*+CzWak*) (DyWak =Dy "Wk +Dzwuk =Dz "wak ) >

QeAt
Eo”F*(wjk»Wik*)

<|wazk'Dx'W1k+DzWuk‘Dz'W3k|2> . (3.17)

The equality A*F(8Y,w*) - AF(8Y,w) = -2i Im[A*F(8Y,w*)] has been applied and the subscript
o of Py abandonned for simplicity. The three terms of (3.17) give respectively the
amplitude variation associated with the acceleration, radiation damping and quantum
excitation.

4, EQUILIBRIUM IN THE CASE OF BETATRON COUPLING WITH RADIATION

4.1 Equilibrium amplitudes

The finite amplitude variations with radiation for a finite time interval At are
written explicitely in Eq.(3.17). On the 1limit of infinitesimal interval (At»dt),
Eq.(3.17) becomes with the usual notatjon’) :

d|A|?
—lE%l— = -2 |AC] s (8.1)

where ag are the damping coefficients

P
s g

ak = < 7E, , (4.2)

which are proportional to the damping partition numbers Jk'

Im[ (Cywy k*+CWak* ) (DxWok =Dy 'W1k+DzWyk-Dz ' Wak) ]
Im(wygWak* + Wagwuk*)

J =1+< > . (4.3)

and where Qg are the transverse beam amplitude coefficients

5 ¢ lewzk‘Dx'W1k+DzWuk'Dz'W3k|2 N
Eo? Im? (Wi KWak* + WakWyk*)

Sl %
% =<7 = (4.4)

These relations use the identity F(wjk,wjk*) = 2iIm{wygwop* + WKWy k*) .
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Within the assumption made in Section 3.1, a stationary state will occur after a
few damping times and it corresponds to the condition d |Ak|2/dt = 0. Hence, the equili-
brium amplitudes are (Eq.(4.1)) :

LIRS~ (4.5)

and this is the important result to be used in Eq.(2.18). Betatron coupling is present
through the eigenfunctions (Eq.(2.19)), the fact that both vertical and horizontal
dispersions have an influence and the need of four coefficients (k = 1 to 4) in order to
describe the whole motion.

4.2 Equilibrium emittances

Betatron oscillations are characterized by the transverse invariants of the motion,
which define the commonly used emittances Ey. If by definition Ey represents the
invariant mean-square amplitudes of the transverse oscillations, we must have :

2
S b2 (4.6a)

E
Yy By

Starting from the solution (2.18) and using the eigenfunctions (2.19) as well as the
equalities between complex conjugates, we can rewrite Eq.(4.6a) in the following manner :

ey = 2 = L (R g+ 1R gl®) (4.60)

the two subscripts of the w's being associated with the horizontal and vertical
coordinates, respectively.

In order to simplify the next calculations, let us now assume that the accelerator or
storage ring of interest is large and has separated functions. This means that the radius

of curvature p is large and there is no gradient in the dipoles (Cy = C, = 0).

Consequently, <D/p> is small with respect to 1 and Eq.(4.2) becomes simply :

2 .
ag = < 5{; > (with g = 1) . (4.7)

Hence, putting together Eqs.(4.4) to (4.7) and introducing the explicit forms (2.19)
of the eigenfunctions make it possible to write the emittances as follows :

Qe m% |K|2 mg «|?
E, =< > <H;>
xRy L@@ o2 M Ty 7
Qe wl.;'. wt
E, = < > Hp> + —5————s— <Hp> s )
z REoP, [ (2 + 'K|2)2 vz |K|2)2 3>] (4.8)
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where Py and Q¢ are given below Egs.(3.9) and (3.13), respectively. It remains to
define the functions H; and H3 which are simply the numerator of the second bracket in
Eq.(4.4) of Q; and Q3 :

2
K R 2 1 ' R 2 1 [
H& = i:%— 28y [Dx+ 2 (BxDx'+ RoyDy)?] + 28, (Dz+ 2 (827 '+ RazDz)?]
R . . . BxBz *ovn( gt
+ ;:7§=§= Re [k*(ay-i)(az+i)exp(is)]DxDy + iR Re [k*exp(i¢)]Dy'D;
+VBxBz

+ 1 /22 pe [k*(ay-1)exp(i9)]DyD," + %: / Ef Re[x*(az-i)exp(ie)]Dy'D, . (4.9)

The subscripts of H are associated with the two indices of w (see Eq.J2.17)), and the phase
¢ is written for :

¢ = ¢X - ¢z - 0A . (4.10)

The two first terms of (4.9) are directly proportional to the dispersion invariants (named
Iy and I;), which appear naturally in Ex and E; respectively’), in the absence
of coupling. The other terms are obviously coupled terms for the dispersion.

Turning back to the expressions of the equilibrium emittances (4.8) and (4.9), which
appear to be fairly complicated, let us look at two borderline cases :

a) For vanishing linear coupling (x + 0), the four terms in the square brackets of
Eq.(4.8) have finite 1imits. Two of them are equal to zero, while the two remaining ones
become equivalent to :

31 L] Y. ul Hp> = R <1, (4.11)
(wi + |Kl2)2 17 = 2 X7 o (wg + |K|2)2 37 = 2 Z . .
In this case, the transverse equilibrium emittances and their ratio g = E;/Ex are

simply given by :

. Qe
Ey =< ?E;B; > <Iy>
<Ip
g = I (4.12)

As expected, the vertical emittance is nul, if the vertical dispersion vanishes in
addition to «.

b) For vanishing vertical dispersion (but « # 0), the functions (4.9) can be written as
follows :



2
IKI R
=5 5 Iy . (4.13)

2
<]
£, = < Jelx o 2 ) 4
X = S 2EyPy [<].2
4 (++) +1
A
(4.14)
1<),
E =< Qe Iy N 4 ( A )
z % 2E,P [<].2
0y 4 ( K ) +1

({<]/8)?
g =
(|| /8)24472
The corresponding curves for Ey and g are plotted as functions of the ratio |K|/A
in Fig. 2. Both Eq.(4.14) and Fig. 2 show that on the Timit |K| » A (sometimes called full
coupling) the transverse emittances are equal and take half the value of the horizontal

emittance at x = 0.

In general, coupling and vertical dispersion are not vanishing, so that not only Iy
and I, are contributing but also the products DxDz, Dx'Dz', DxDz' and
Dy'Dy in agreement with expression (4.9).
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Fig. 2 Horizontal emittance and emittance ratio as function of «/A, with vanishing vertical dispersion
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5.  APPLICATION TO EMITTANCE CONTROL

The expressions for the emittances in the presence of betatron coupling and radiation
allow an estimation of the range in which the emittance ratio g can be controlled®).

Let wus consider the particular example of the LEP designg) for which the
assumptions made 1in the previous section are valid. Indeed, the tune values are
Qg = 70.35 and Qz = 78.20, the radius of curvature is large and there are separated
functions. The values of the dispersion invariants have been estimated to be <Iy> = 1.75
10-2 m and <Ip> = 1.8 10-" m, the vertical dispersion being associated with the expected
machine imperfections and closed orbit after correction®). It is also important to
mention that, in the LEP design, there exist four tilted-quadrupole schemes located in
sections where Dy = 0 (for the perfect ring) in order to minimize the effect on Dz of
a coupling compensation. These schemes aremadeof fourtiited quadrupoles on either side of
every experiment (outside the experimental free space) for compensating the solenoidal
fields present at these points and controlling the residual machine coupling.

Let us estimate firstly what is the minimum emittance ratio which can be reached
after an orbit correction achieving a root-mean-square deviation of about 1 mm. The best
we can do consists of compensating exactly the T1inear coupling such as « = 0.
Equations (4.12) then apply directly and give for our particular LEP example

Imin = 1%.

Secondly, let us try to determine the upper 1imit of g which can be reached either by
trimming the tilted quadrupoles (changing the coefficient k) or by modifying the parameter
A (i.e. the distance from the coupling resonance). To dincrease g above its minimum of
1%, one has to inflate |K|. When g reaches a value of the order of a few percent, the
k-contributions dominate the Dgz-contributions in Eq.(4.9) in such a manner that
Eq.(4.14) and the associated curve of Fig. 2 give a good approximation for the change of g
with |KI/A. It follows from these results that the strengths of the tilted quadrupoles are
sufficient at the energy of 55 GeV to reach gpax = 12.5% for A = 0.15. Changing then the
tune values until A = 0.012, it is even possible to obtain gpax = 96%. Remembering that
the nominal value is g = 4% in LEP, the present analysis allowed us to show that it is
possible to cover a sufficiently large range of values around the nominal one and also to
get full coupling if necessary, while compensating simultaneously for the linear effects
of the experimental solenoids.
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ABSTRACT

An outline of the kinetic theory of plasmas is given starting
from the N-particle distribution. The derivation of the
BBGKY system of equations is discussed emphasising the
physical arguments rather than the mathematical details. It
is shown how this system of equations leads to the Vlasov
equation. The derivation of this equation introduces the

important idea of the self-consistent field. A Dbrief
discussion of some of the properties of the Vlasov equation
is then given. Binary collision processes are then

considered beginning with a description of various relaxation
models. The more accurate Fokker-Planck equation is then
discussed which is appropriate to small angle scatterings,
the emphasis again being given to the physical justification
and content of the equation. Finally, a brief account is
given of how the kinetic theory can be used to derive the
various fluid models of plasmas.

1. INTRODUCTION

The kinetic theory is the most fundamental aspect of the mathematical description
of plasmas. The aims of the theory are to start from an assembly of N charged particles
moving under the influence of their own charges and whatever external fields might be
present and to derive the dynamical properties of plasmas. There is a vast body of
research on the foundations of the kinetic theory of plasmas and an even vaster body of
work which rests on these results. In this lecture the aim will be to concentrate on the
physical content of the kinetic theory, indicating the assumptions and approximations that

have gone into the derivations without going into too much mathematical detail.

The kinetic theory of plasmas is a truly N-body problem since due to the long range
nature of the Coulomb interaction between the charged particles making up the plasma every
particle interacts with every other particle. Thus, the main task for a satisfactory
kinetic theory of plasma is to find a convincing way of dealing with this situation. The
chapter will be divided into three parts. In the first part the derivation of the Vlasov
equation will be outlined and a brief description of the physical content and properties of
this equation will be given. In the second part, the way in which binary collision
processes are incorporated into the kinetic theory will be discussed and in the last part
we shall show how the fluid treatment of plasmas can be derived from the kinetic

description.
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2. THE VLASOV EQUATION

In order to appreciate the physical content of Vlasov's equation we need to start from
the general position of an assembly of N charged particles. Of course, N is so large
(for typical laboratory plasmas N ~ 1013 - 101% cm™3 ) that even if we had perfect
diagnostics of the positions and velocities of all the particles at some instant of time we
would be unable to deal with such a wealth of information. We shall confine the present
discussion to a one-component plasma in which the ions can be thought of as immobile
serving only to neutralize the electron charge in equilibrium. We shall also ignore

magnetic interactions and consider only the Coulomb interaction. We begin by writing down
th

the Hamiltonian for the N-electron system where the i electron has six phase-space
coordinates x = (gi, Bi) , where the gi and Ri are canonical Hamiltonian variables.
2
N p¢ N 2
i e
= — + [ . .
Hy ! = ) (2.1)

2
i=1 i<j=1 4“€0|ii - gjl

Since we are not interested in the detailed motion of all N-particles we need some
averaging procedure to enable us to reduce the complexity of the system. We now introduce

the N-electron probability distribution DN(§1, X ceey X t) normalized to unity which

~2! ~’
describes the state of the N-electron system at any instant of time. We are interested in
the evolution of the system in time and the evolution of DN is given by Liouville's

theorem
GDN
— + {DN, HN} = 0 (2.2)

ot
where { } denotes the usual Poisson bracket. Starting from this equation there is a
systematic technigue for reducing equation (2.2) for the N-electron probability to a one-
or two-electron distribution function. This procedure leads to the BBGKY hierarchy of
equations (after the names of its originators), details of which can be found

(1,2)

elsewhere Here we shall content ourselves with a brief description of the steps in

the argument.

The first step towards simplification is the definition of a reduced probability

distribution fs/VS where V is the configuration space volume of the system and

= = Py g, e By (2-3)

where the function fs is now a distribution involving only s-particles. With the

aid of equation (2.2) we can obtain the equation for fs which is

oy + % Ei . bfs _ E % Efii . EEE = n % J 095 st1 . afS+1 dx (2.4)
. .
ot T R - T i=1 % %p;  ~sH

where ¢ij =z e/ and n, is the particle density. No approximation has been

q; - gj

made to obtain this result and we see that the equation determining fs contains fs+1
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and thus the equation for fs+1 contains fS+2 and so on back to DN . We do not,
therefore, appear to be any better off. However, we now appeal to a physical argument to
justify the use of simplifying approximations. In order to deal with this problem of

closure the Mayer cluster expansion is often used:

f10x)) = £,(x)
(2.5)
£olxyr X)) = £1(x)E (%)) + Plx), x5)

and so on. In view of the long range nature of the Coulomb interaction one might expect
that P(x,, X,) would be comparable in magnitude to f1(§4)f1(§2) i.e. pairs of particles
would be strongly correlated. However, the Coulomb interaction results in particles moving
so as to preserve quasi-neutrality. Each particle attracts a screening charge cloud of the
opposite sign so as to neutralize its own charge. The effect of this screening is that
over almost the whole of phase space P/flfl is a small quantity of the order g =
(nokg)'l where AS = eOkT/noe2 and €y, k, T and e are the dielectric constant of
vacuum, Boltzmann's constant, the electron temperature and electron charge. [ noxg > 1

is often taken as the definition of a plasma - a typical value for a hot laboratory plasma

is ng o~ 10% cm™3 , Te ~ 1060k giving n XS ~ 104 .]

0
We can now use this as a basis for simplifying equation (2.4). Assuming that three
particle correlations are even weaker than two particle correlations we can take s = 2

and write equation (2.4) as

of df, 3, O
e YR e T Mol ag gy, i)
(2.6)
+ ng Efiz . —9— P(x,, x,) dx .
6g1 521 ~1r 22 ~2

We do not write down the equation for P(il’ iz) but since we neglect three-particle
correlations equation (2.6) together with the equation for P(X;, x,) mnow form a closed
system. However, even this system is too complicated for general use and we

are forced to approximate further. First note the form of equation (2.6). The first term
on the right hand side of the equation describes the uncorrelated motions and the second is
due to two particle correlations. We shall see later that the second term describes the

effect of binary collision processes.

The effect of the screening is such that two-particle correlations are very weak
except over a very small region of phase space of volume ~ g2/n0 . In view of this we now
aim to describe the system in terms of a 'smoothed-out' distribution which should be a good
approximation over almost the whole of phase space. This smoothing procedure can be
appreciated by returning to equatioh (2.4). If the equation is non-dimensionalized in
terms of the natural time and length scales for the system of u;l and AD where w; =

noez/eom it will be found that the third term on the left hand side of the equation is of
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order g . Neglect of this term then allows the equation to be solved with the

uncorrelated function
fs(§1, §2, vees §s) = f1(§1)f1(§2) seoe f1(§s) . (2.7)

We also note that fs is the distribution function of s-test particles. If we assume that
-1
the separation of these s-particles is large then |gi - ﬁjl +0 for i, =1, 2 «..

s, 1 # j which again allows us to obtain the uncorrelated solution, equation (2.7).

The smoothing procedure is equivalent to allowing e , m and 1/n0 to become very
small ( ~ g ) while at the same time keeping e/m , kT/m and noez/m constant. In the
continuum limit g = 0 the charges and masses are completely smoothed out and we have a
continuous, six-dimensional phase fluid. Instead of a singular distribution function
consisting of a set of §-functions we now have a smooth, continuously differentiable

distribution function. In the limit g = 0 , equation (2.6) reduces to

of

ng 09,
of . [ 5——— )] = 0 (2.8)

+
ot T 651 m

where we have changed from q , p variables to x , ¥ where x is now the position
coordinate and y the velocity. In contrast to a normal fluid the six-dimensional phase
fluid described by equation (2.8) contains the thermal information relating to the
distribution of velocities. The final step in this procedure is to interpret the third

term in equation (2.8).

In order to do this we note that the electric field acting on the electron at position

§1 at time t , can be written

09
e E(x,, t) = ng J 32;- £(x,, Yyo t) dx, dy, - (2.9)

Making explicit use of the fact that ¢,, is a Coulomb interaction and taking the

divergence of equation (2.9) we obtain from (2.8) and (2.9) the final result

df f _ e ?f B
L ox - E(x, t) oy (x, v, t) = O (2.10)
noe
VeE = —|— [fx vy v ay (2.11)
0

where we have now dropped the subscript 1 from (x, ¥) since this is now redundant.
Equation (2.10) is the required Vlasov equation which forms the basis of most of plasma
physics. The Vlasov equation is coupled to Poisson's equation through the electric field
E . The electric field appearing in Vlasov's equation is the SELF-CONSISTENT field due to
all the other electrons in the system moving in an uncorrelated way, i.e. uncorrelated to
any individual particle but correlated to all particles by the self-consistent field. The

existence of the self-consistent field is the reason why a plasma is so rich in its
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collective effects and is the solution to the problem posed at the outset - namely, how to
take account of the fact that every particle could interact with every other. The concept
of the self-consistent field is the same as that employed in the Hartree model of atomic
structure. It may be viewed as an iterative solution to the Vlasov-Poisson system, i.e.
assume a distribution £ , calculate the resulting electric field E and then determine
the correction to f and so on until the electric field resulting from £ produces the

same distribution function.

Before discussing the properties of the Vlasov equation we note that the above
derivation used the concept of Debye screening applied to a neutral plasma. For a non-
neutral plasma it is not obvious that a similar concept would still hold. A discussion of
electrostatic shielding of a test electron embedded in a magnetically confined pure
electron gas column has been given by Davidson.(3)He concluded that for rigid rotor
equilibria with nearly uniform density the shielding length is the local Debye length for
the case that the test electron is at rest relative to the mean motion of the column. A
further condition is that there should be many Debye lengths across the electron gas
column. The properties of non-neutral plasmas are also discussed by Malmberg and

deGrassie(4).

2.1 Properties of the Vlasov Equation

The discussion which leads to the Vlasov-Poisson system of equations given by (2.10)
and (2.11) is easily generalized to include magnetic interactions. The complete Vlasov-

Maxwell system of equations is then

of e df _
HrLe T BB ryxREm ) g =0 (2.12)
oF
YxH = I+ €& 3% (2.13)
3
YXH = -k 3 (2.14)
J(x, t) = -e [ f(x, v, ©) ydy - (2.15)

Noting that the "particle orbit" corresponding to equation (2.12) is

d

33 = oyixe t) (2.16)
& ox, £) = -2 (E(x, £) + v(x, £) x Blx, ) (2.17)
at ~'~' m \R']’ ~ ~ e
we can write the equation
8 x, v, t) = 0 (2.18)
dt ~I ~l .

¢
thus enabling the equation to be integrated once we know the particle orbit (method of
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characteristics). The Vlasov equation thus appears as the analogue of Liouville's equation
in the phase space of a single particle. As a general method of solution equation (2.18)
is not very helpful since the orbit is in the self-consistent electromagnetic field which
is not known until £ is determined. However, the method is very useful in small
amplitude solutions when the equation can be linearized. The integration is then carried
out routinely along the unperturbed or equilibrium orbit. Equilibrium solutions to

equation (2.12) are also obtained as functions of the constants of the motion.

A fundamental property of Vlasov's equation is that it is time reversible, i.e. if
all velocities were reversed and time was made to run backwards, all previous motions would

be reproduced. 1In other words the equation is invariant under the transformation
(AR AR TS TN T T

This is because the random binary collisions are not included in the equation. It is these
collisions which introduce physical dissipation and irreversibility into the system. The
interactions which are responsible for the self-consistent field cannot be interpreted as
collisions in the usual sense. This is because the effect is produced by a large number of
particles and is therefore a macroscopic effect. Since an average over a large number of
particles is involved the process becomes certain rather than random and cannot cause an
increase in the entropy of the system. This can be demonstrated explicitly by means of an

H-theorem where
H(t) = [ f s f ay ax (2.19)

and it can be shown that Vlasov's equation then satisfies

= 0 B (2.20)

One final property of the Vlasov equation worth mentioning is the following.
Referring to the case of electrostatic interactions any foj(v) will be an equilibrium

solution of equation (2.10) provided only

qu J £oy(0) agax = o . (2.21)
j

In particular the Vlasov equation does not single out the Maxwell-Boltzmann distribution.
The effect of binary collisions must be included to ensure that the distribution will relax
to a Maxwell distribution. The above observations should be borne in mind when discussing

the phenomenon of collisionless damping or Landau damping as it is usually known.

3. THE EFFECT OF BINARY COLLISIONS

The Vlasov equation is often called the collisionless Boltzmann equation. In the
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justification of this equation with the aid of equation (2.6) we neglected the two particle
correlation function P(il' §2) on the grounds of the effect of screening. However, as
mentioned in the previous section it is the binary collisions which introduce dissipation
into the system which in turn is reponsible for classical transport phenomena. Let us now
consider how the effect of binary collisions is incorporated into the kinetic theory. The
discussion will be divided into two parts. In the first part we shall describe the
simplest method of allowing for collisions through the introduction of a relaxation time.
In the second part we shall discuss the more accurate Fokker-Planck model. This model
applies specifically to a system, such as a plasma, where most of the scatterings are

through small angles.

3.1 Relaxation Models

The simplest model of all arises through the introduction of a relaxation time <7
which in general will be velocity dependent. If we consider only changes to the

distribution function due to binary collisions, which we write (af/bt)c then the

oll '
relaxation model is

(o) (£, - £)
- = —— (3.1)
coll T(v)

where f0 is the equilibrium distribution. Clearly, any small departure from the
equilibrium distribution will decay exponentially on a timescale proportional to T .
The effect of collisional relaxation can be incorporated into the Vlasov equation simply by

replacing the zero on the right hand side of the equation with the above relaxation term.

This simple relaxation model, however, suffers from the defect that it does not
conserve particle number as may be seen by integrating equation (3.1) over velocity space.

For an oscillatory process number would be conserved on average but not instantaneously.

This defect can be remedied by the Krook(s) model which is
df £ n(x, t) 20
Bt T It Ta, T (3.2)
coll 0

and n; is the equilibrium density. Clearly, equation (3.2) does now conserve number
density instantaneously. The interpretation of equation (3.2) is that particles are
absorbed at a rate proportional to f and re-emitted at a rate proportional to the local
density with a Maxwell distribution. The particle distribution is therefore brought to
rest as a whole with the result that although conserving particle number, equation (3.2)
does not conserve momentum or energy. This does not mean that this model is therefore of
no value. It applies, for example, to electron neutral collisions where the momentum and
energy would be lost from the electron fluid while the electron number would be conserved.
Such a model is therefore appropriate to a weakly ionized plasma. Indeed, since an atom is

so much more massive than an electron the electron would effectively be brought to rest.
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The above collision model is linearly proportional to f which is appropriate to
electron-neutral collisions. However, for a fully ionized plasma where electron-electron
or ion-ion collisions will be important such collisions will be proportional to £2 . In
addition, for these collisions momentum and energy must be conserved. Krook et al(s)have

developed a simplified model to take account of such collisions as follows

2
%%) _ _n(x, t) £ + n(x, t) % (3.4)
coll o T %o
n 3/2 n )
where ® = [EEEETET_ET] exp{- EEETE;_ET [Z - qlx, t)] } (3.5)
n(x, t) = [ £ ay (3.6)
1

qlx, t) = ;T;T_ET f v £ dy (3.7)

3kT _ 1 2
Eu ) Jv-@?¢fay (3.8)
and Jea = 1 (3.9)

where %(5' t) and T(g, t) define the flow velocity and temperature at x and t . The
interpretation now is that the re-emitted particles (after the collision) at (x, t) emerge
with a Maxwellian distribution centred on the mean flow velocity q(x, t) corresponding
to the temperature T(x, t) . It is easily verified that this model conserves particle
number, momentum and energy and is therefore appropriate to describe like-particle

collisions.

Another commonly used relaxation model is that for a Lorentzian plasma. This refers
to a plasma in which the ions are in a highly ionized state. Since the collision cross
sections for electron-ion and electron-electron collisions are in the ratio z2 where 32
is the ionic charge the electron-ion collision frequency can be used but its velocity

dependence must be included. Thus

df
of = —v(V)(f - £) (3.10)
ot 0
coll
o3
and vv) = vy — (3.11)
o3

and the equation can be put into the particle conserving form if required.

3.2 Fokker-Planck Model

The kinetic theory of gases is described by the Boltzmann equation. The collision

integral in this equation describes large angle scattering due to close encounters. For
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Coulomb interactions in a plasma the slow fall off of the interaction causes the Boltzmann
collision integral to diverge. This is an indication that distant encounters (small-angle
scattering) are important. However, we know that the Coulomb interaction is screened so
that the integral is cut off and does not diverge. Nevertheless, many small-angle
collisions can accumulate to produce large-angle deflections and will therefore be

important.

In Section 2 we noted that Vlasov's equation could be obtained as an expansion in the
plasma parameter g = (noxg)'l . Vlasov's equation is the zero-order result of this
procedure. The equation obtained to first order in g is the Fokker-Planck equation which
takes account of these small angle scatterings. The derivation of the Fokker-Planck
equation by such an expansion can be found elsewhere(6'7). Here, we shall confine

ourselves to a simple physical argument to justify the form of the Fokker-Planck equation.

In this approach we make direct use of the fact that changes in the particle velocity
distribution are caused by many small angle scatterings. Let F(y, Av) be the probability
that the particle velocity changes from ¥ to y + Ay in a time interval At due to
collisions. The distribution at time t can therefore be expressed in terms of the

distribution at the slightly earlier time t - At as follows
flv, t) = [ f(y - Av, £t - At) F(y - Ay, Ay) d(Ay) - (3.12)

Now due to the long range nature of the Coulomb force most of the collisions will be small

angle and we may therefore expand the integrand

J{fty, ©) F(y, &v) - At F(y, a ()

f(v, t) ot

coll

Ay - %i [£(v, ©) F(v, av] (3.13)

+

1
2 Av, Av

2
v, 3re— [Er, ) By M) ]}
i 'k

where a repeated index denotes a summation. Using the fact that the probability is

normalized
J Fly, &y aay = 1

we obtain

of = 1 (fepw o & 1 _22
( ) At f{ by ov (£F) + 2 AviAvk v, dv
coll ~ ik

(£7) Jacaw) . (3.14)

We now write this as
(af) 0

of 32 I<AviAvk>
coll i ik

At

£} (3.15)

N|=
2
g

ot
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where <Avi> and <AviAvk> are the average values of these quantities over the time

interval At and are defined as

<avy> = [ Fly, Av) by d(Ay) (3.16)
<hvibv> = [ By, Ay hvidvy d(AY) . (3.17)
Finally, we obtain
df _ d 1.3 dE
(e = - B8 g By ) (3.18)
coll i i k
<Av,> <Av,Av >
_ 1.9 ik
where Ai = AT > ka —x (3.19)
<Av, Av, >
i~k
and Pix ~ At )

Equation (3.18) is the Fokker-Planck equation. The first term has the character of a
dynamical friction which decreases or increases the population of a group of particles
depending on whether they are moving faster or slower than the corresponding equilibrium
particles. The second term acts like a diffusion in velocity space and has the effect of
spreading a velocity perturbation. The equilibrium Maxwell distribution results from a

balance between these two terms.

We also note that the right hand side of the Fokker-Planck equation is the divergence
Os.

in velocity space - 533 of the vector
i

s, = A, f - % D,,. =— (3.20)

where s; is the particle flux in velocity space. The Fokker-Planck equation is therefore
an equation of continuity thus guaranteeing the conservation of the number of particles.

In addition the quantities Ai and Di are connected by the equilibrium condition that

k
the particle flux in velocity space must be zero.

In order to make practical calculations with the Fokker-Planck equation we need
explicit forms for the quantities Ai and Dik . To complete the discussion of the
Fokker-Planck equation we will quote the result for these terms. A fuller account can be

found in references 5 and 6.

The coefficients in the Fokker-Planck equation are obtained by considering the details

of binary collisions of particles of species s with all other particles of the plasma(7).

The result is



2 2
afs) B a5 950 1og A | 55 _ “1”k) {fs (v) s’ (v")
ot 2 ov, u 3 ’
coll 8TE‘m i u m , ov.
s’ 0's s k
(3.21)
£, of
- = () — (»} ay
m bvk
6ik uu
where u = v - x’ v ( ) comes from an average over scattering angles and log A

is the factor which arises from cutting off the Coulomb interaction at small angles due to

the effect of Debye screening.
Note that the friction and diffusion coefficients depend on the distribution function
with the result that the equation is nonlinear. The quadratic dependence on f for like

particle collisions is shown explicitly.

The Fokker-Planck equation is often written in another form

of a? q2, log A 2
5 - - 2 Is T 77T 0 [f (v) o h(v) - 1.9 (f (v) _Q_g__)] (3.22)
ot , 4me2m2 avi s ~ bvk ~ 2 bvk s ~ bvibvk
s 0's
where h(y) and g(v) are the Rosenbluth potentials
g(y) = [E_, (¥) udy’ (3.23)
Mg
ny) = (1+ =) [, (g wtay . (3.24)

For many problems the distribution can be assumed to be close to thermal equilibrium
so that the collision term can be linearized about a Maxwellian. Finally, when all
scattering processes are included the Fokker-Planck equation satisfies the important

constraints of conservation of number density, momentum and energy.

4. FLUID MODELS

In many situations a simpler description than the full kinetic model is desirable,
either because the kinetic treatment would be too complicated or because the simpler model
contains all the essential physics. In the final part of this lecture we will show how

these simpler, fluid models, may be obtained from the kinetic equation.

If the distribution function fj(ﬁ' v, t) is known, then the various physically

significant quantities can be obtained as follows:

ny(ge £) = [ £500 w b &y (4.1)
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_0 = _9_ + 9 + _0_
ox mj I vnvmfjdz ox (Ej)nm mjun 0x (njum) njum dx (mjun) !
m m m m
We may therefore write
m, & [ vy f.ay = VB, + mu Ve(n,u) + nu Vmu) . (4.11)
joox 7o~~~ ~ % i~i~ 33 i~ ~ 33
Finally,
of .,
f v(E + v X B)- —4 av = -E n., - (u., X B) n, (4.12)
M~~~ By ~3 M~ 3

where (4.12) was obtained by considering the (nm) element, integrating by parts, and using
(6/6vm)(x x E)m = 0 again. Combining equations (4.10), (4.11) and (4.12) and using the

continuity equation we finally obtain the first moment (or momentum) equation

o)
m.n., =— u, + n.m,(u.*V)u, + VeP. = .n.E + g.n.(u.x B) . (4.13)
373 dt ~j J 31~ ~ ~ ®] qJ J~ q] j~ -~
This is usually written in the form
O, TR qay
Dy (u. Ny, + —2 = L (E+u, xB . (4.14)
ot ~j ~ A5 njmj mj ~ ~3 ~

Notice that the equation for each moment contains a term involving the next higher moment -
the closure problem. Thus, the equation for nj contains gj and the equation for Bj
contained gj . As already mentioned there is no rigorous method of closure for this set
of equations. Instead some physical justification is sought for terminating the

hierarchy.

The next equation in the series is the energy equation obtained by taking the moment
of mj vev/2 . This is usually as far as one goes with the moment method and we shall not
write down the general energy equation. Instead we shall briefly consider the various

physical approximations which are used in a fluid description.

The simplest model is the COLD-plasma approximation in which the term Z.Ej is simply
neglected thus closing the hierarchy of equations after the zeroth and first moments. The
plasma is thus described as two cold, interpenetrating fluids which may be expected to be a
good approximation in a variety of wave propagation problems provided the phase velocity of
the wave is much greater than the thermal velocities of the particles. The two fluid
approximation is often extended to the case of two warm fluids in which the<pressure tensor

is now included but assumed to be diagonal, i.e. the pressure is isotropic. Thus
P = P. L (4.16)

where Tj is assumed to be constant. The warm two fluid model gives rise to new effects
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and also exhibits the slow thermalization behaviour, characteristic of a high temperature
plasma, which allows a plasma to persist in a state in which the two species may have

widely different temperatures.

The final fluid approximation we would like to mention is the ONE-FLUID or magneto-
hydrodynamic (MHD) model. This is appropriate under conditions where the electrons and
ions move together maintaining charge neutrality. This occurs at low frequencies, i.e. w
<< Qi , and long wavelengths A >> vTi/Qi where Qi is the ion cyclotron frequency.
Adding together the continuity equations for the electrons and ions we obtain the equation

of continuity for mass flow:

olt) . =
e + Tolpny) 0 (4.17)
h = .m,
where p Z njmJ
J
and Yy = g njgjmJ / g njmj .

Adding the momentum equations gives the equation for the centre of mass motion

oy,

=t (o *Vu, = - VB +J XB (4.18)

~ ~'~0

where P = gi + ge refers to the centre-of-mass velocity as is appropriate to a one-
fluid description. The pressure term is usually assumed to be diagonal and J 1is the
electric current given by

J = n.q.u.

~ Z JqJ“ﬂ

J

Equation (4.18) is reminiscent of the Navier-Stokes equation of fluid mechanics without the
viscous force but containing the body force J X B due to the fluid being magnetized. The
one-fluid model is usually closed by making the adiabatic approximation which assumes a

local Maxwellian so that

(a—-+uN0'Z)(-——) = 0 (4.19)

where vy 1is the ratio of specific heats. Equation (4.19) results from the energy equation

by neglecting the heat flow and assuming perfect conductivity, i.e.
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WAVES IN PLASMAS

C N Lashmore-Davies
Culham Laboratory, Abingdon, Oxon. OX14 3DB, GB

(Euratom/UKAEA Fusion Association)

ABSTRACT

A brief discussion of the relevance of linear waves in
infinite uniform plasmas is given. The linear waves of a
field-free plasma are then discussed in some detail in order
to illustrate the methods which are used in more complicated
problems. High- frequency waves in a magnetized plasma are
then described. The main emphasis is to show how the
magnetic field affects the wave phenomena. The two specific
cases of propagation parallel and perpendicular to the
magnetic field are examined. Next, low-frequency waves in a
magnetized plasma are discussed from the point of view of
ideal MHD. Finally, the problem of Raman scattering is
discussed in some detail. This phenomenon illustrates how
the nonlinear terms previously neglected can introduce
additional effects. Finally, the preceding analysis is used
to introduce the subject of the beat wave accelerator.

1. INTRODUCTION

A magnetized plasma is one of the richest wave media yet studied. It owes this
richness to the long-range nature of the Coulomb interaction, and it is this long-range
interaction which makes the many-body or collective effects in a plasma so subtle. One of
the most important concepts arising from the collective effects is that of the self-
consistent electromagnetic field, which is the field which a given plasma particle
experiences due to the presence of all the other particles. This self-consistent field is

crucial to the theory of waves in the plasma medium.

The idea is as follows. Suppose there is a small electromagnetic field present in the
plasma. This produces forces on the plasma particles, resulting in currents and charge
perturbations which act as source terms for further electromagnetic fields, which will then
produce further plasma motions, and so on. This system of field perturbations and particle
motions is iterated until the assumed electromagnetic field is itself produced by the
resulting plasma motion. For the theory of linear waves in a plasma, the self-consistency

condition gives the dispersion relation which contains all the information concerning the

wave motion.

In this lecture we shall be mainly concerned with linear waves although an example of
a nonlinear wave phenomenon will be discussed at the end. 1In order to discuss linear
waves we must first of all define the equilibrium state. We shall confine ourselves to the
idealization of an infinite, uniform plasma. Having specified the equilibrium, the linear
waves describe the possible modes of oscillation when this equilibrium is subject to a

small perturbation such that products of perturbations in the equations of motion can be
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ignored. Physically, this means that the wave amplitude is small enough that effects

such as the beating of two waves to produce sum and difference frequencies or modification
of the equilibrium are negligible. Many of the most interesting problems in fact are
concerned with these effects. However, we must first understand the linear modes of
oscillation of the plasma medium. The theory of linear waves does not contain any
criterion on how small the wave amplitude should be for the theory to be valid. To obtain

such a criterion we must appeal to a nonlinear analysis.

Let us briefly consider the relevance of our idealized model, bearing in mind that
most plasmas are either finite, non-uniform, varying in time or any combination of these.
The primary justification is on the grounds of simplicity. A study of the simplest of all
models serves to identify many of the basic phenomena and then forms a framework for more
complicated situations. If the wavelength is less than the plasma radius (A << a) or the
characteristic scale length L of some non-uniformity (A << L) , or if the frequency of
the wave is much greater than the inverse of the plasma lifetime T(w >> ) , then these

complications will produce only small corrections to the simple theory.

Another noteworthy feature of the simple theory is that no modes are lost by the
simplification - the more realistic models only modify the properties of existing modes of
the simple model. Even though many of the wave motions observed in plasmas relate to a
nonlinear saturated state it is usually the case that the frequencies and wavelengths are
determined quite closely by the linear theory. A study of the properties of linear waves

does therefore have relevance to physical problems.

Finally, it is worth mentioning that the plasma instabilities which can occur when
there is a source of free energy result from one or two of these linear waves which can
draw on this free energy. A knowledge of the linear waves in a plasma is therefore

essential to the study of stability.

Let us now consider the simple example of linear waves in an infinite field-free,

uniform plasma in some detail.

2. WAVES IN A FIELD-FREE PLASMA

In any problem in plasma physics there is always a choice of plasma model. For our
present purposes the two-fluid (hydrodynamic) model is adequate to illustrate the
properties of linear waves in a field-.free plasma. By field free we mean that there is no
equilibrium magnetic field. A steady electric field would not change the nature of the
waves but might cause some of them to become unstable. Here, we are only concerned with
stable wave motions. As always the plasma is coupled to the electromagnetic field through
Maxwell's equations. We therefore require solutions to the following system of coupled

partial-differential equations

—% 4 V'(n v ) = 0 (2.1)



oV KT
€ . e = - & g _ &
ot T (Ze Z)Xe *Yeum e m = m Ye*EB (2.2)
e e e e
bni
6T + Zo(nlzl) = 0 (2.3)
6!i e e
ot + (Zi'Z)Zi = o E o %i x B (2.4)
i i
3
VYxH = g+ €q Ty (2.5)
o
,Y, X E —p,o EE‘ . (2-6)

The above equations are written in MKS units where ne , ni , ze and !i are the electron
and ion number densities and the electron and ion fluid velocities. We have assumed a zero
pressure (cold) ion fluid and a finite pressure (temperature Te) electron fluid where Yo

is the ratio of specific heats of the electron fluid. The current density in equation

(2.5) is

J = n,ev, - n _ev . (2.7)
~ i~ e ~e

The magnetic field appearing in the above equations is, of course, an oscillating field due
to the presence of a wave whose properties are still to be determined. Equations (2.1)-
(2.7) are highly nonlinear and in order to describe the linear wave motions we must
linearize this system of equations. To do this we must first define the equilibrium which,
in this case, is particularly simple. The equilibrium configuration consists of a uniform
density plasma with no average electron or ion flows. There is therefore no equilibrium
electric current and since the electron and ion fluid densities are uniform, there is no
equilibrium space charge and hence no electric field. All variables are now separated into
an equilibrium part and a part which represents a small perturbation, varying both in space
and time. The linearization is carried out by substituting the variables expressed in this
way into equations (2.1)-(2.7) and neglecting all quantities which involve products of
perturbed variables. Equations (2.1)-({2.7) are thus transformed into a set of linear
equations in which the variables are the perturbed-field variables and the coefficients of
the equations are constants due to the uniform equilibrium. The equations can therefore be
Fourier analyzed in space and time. Since there is no preferred direction it is sufficient
to assume that all the perturbed fields vary as

exp i(kz - wt)
The set of simultaneous, linear, partial differential equations are therefore reduced to

the following set of algebraic equations

-iun 4 + 1kn0ve1z = 0 (2.8)
KT e
-i + i = - = .
1wxe1 Ye n m lkne1 m E'1 (2.9)
0 e e

-1wni1 + 1kn0vi1z = 0 (2.10)
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; e
41 m % (2.1

i
ik xH, = noe(}\r,i1 - xe1) - iweyE, (2.12)
ik x §4 = 1wu0§1 (2.13)

where perturbed variables carry a subscript 1.

The self-consistency condition on the fields and particle motions is now obtained by

requiring that the above set of equations be simultaneously satisfied. This condition is
given by the vanishing of the determinant of the coefficients and results in the dispersion
relation for the system which is usually written as

Dlwk) = 0 . (2.14)

The solutions w(k) of this equation then give all the properties of the waves of the

system.
Let us now obtain the dispersion relation from equations (2.8)-(2.13). First, solving
for the fluid velocities in terms of the components of the electric field §1and

substituting into equation (2.7) we obtain the conductivity tensor defined by

1, = gkE, (2.15)
where

i 2 i 2

inge in e

+ 0 0
wm um
i e
2 i 2
B inge . inge .
glud) = 0 wm, wm
i e
2 2 2,2
inge inge k Ve -1
0 0 + [1-v
wm, um e 2
i e W
and v%e = kT /m, . With the aid of equations (2.12), (2.13) and (2.15) we obtain
w2
k x (k E,) = - — £ (wk)E (2.16)
~ ~ ~1 2 8 ~1
c
- 2

where glwk) = L + —— gluk) (2.17)

is the dielectric tensor of the plasma. The dispersion relation follows immediately from

equation (2.16) and is
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2
x2 + L. 0 0
zxx
2 w?
0 k4 + — € 0 = 0 . (2.18)
c? Yy
w2
0 0 — €
2 zz

It is clear that the transverse (E L k) modes are decoupled from the longitudinal (E I k)

modes .

2.1 Longitudinal modes

The dispersion relation for these modes is

ezz = 0 (2.19)
ignoring the w? = 0 solutions. There are two solutions of equation (2.19), a high

frequency branch

2 = 2 4 2,2 .
W wpe Yek Ve (2.20)

involving only the electrons, where w;e = noez/eome , known as the LANGMUIR wave and a low

frequency branch involving both electrons and ions

k2c?
s

W2 =

(2.21)
252
(1 + Yek xde

known as the ION ACOUSTIC wave. For long wavelengths the ion acoustic wave is non-

dispersive and travels with phase and group velocity both equal to cs = (YeK Te/mi)“2 .
At shorter wavelengths kxde > 1, where xde = vTe/wPe , the upper limit of frequency of

the ion acoustic wave is the ion plasma frequency wpi where wgi = noez/somi .

2.2 Transverse modes

The dispersion relation, equation (2.18), shows that there are two independent

transverse modes, both linearly polarized. The dispersion relations of these modes are

«x2+>=¢_ =0 (2.22)
2 XX
c
K2 + 92 0 2
- o2 eyy = . (2.23)
Since € = € the two transverse waves have the same propagation properties, one being

XX
polarized with its electric field in the x-direction and the other with its electric field

in the y-direction. With the aid of equation (2.17) and the expression for the
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conductivity tensor we obtain

w2
£ =‘|_.E
XX 2

W

. (2.24)

Using (2.24) in equations (2.22) and (2.23) we finally obtain the dispersion relation for
the two transverse modes

w2 = w2 +c2%? (2.25)

pe

This is also a high-frequency wave involving only the electrons. Transverse
electromagnetic waves do not propagate in a plasma for frequencies below the plasma
frequency, i.e. for w < wpe . k2 <0 corresponding to an evanescent wave. The
longitudinal Langmuir wave also has this property being cut off at w = wpe .« The
properties of the linear waves in a field free plasma are conveniently summarized with the

aid of an w-k diagram shown in figure 1.

Fig. 1 Dispersion
relation of ion
acoustic (S),
Langmuir (L) and
transverse waves in a
field free plasma

One final point worth making which is brought out by figure 1 concerns the Langmuir wave.
It can be seen that the phase velocity (w/k) can vary widely ranging from values much
larger than the velocity of light ¢ down to values of the order of the electron thermal

speed.

3. WAVES IN A MAGNETIZED PLASMA

Let us now consider the effect of an equilibrium magnetic field on the linear waves in
a plasma. We shall not go into as much detail as in the previous section but will point
out the differences introduced by an equilibrium magnetic field and how the wave properties
are altered. We shall keep things as simple as possible by considering only high-frequency
waves which do not involve the ions. The only change to the system of equations given by
(2.1), (2.2), (2.5) and (2.6) is that the linearized momentum equation for the electron

fluid now becomes



a!el KTe e
ot + Ye n,m, v fey = 7 E; (21 M Ye1 X EO) 3.1

where the additional term due to the presence of the equilibrium magnetic field EO
appears on the right hand side of equation (3.1). We assume that the magnetic field is

uniform in space, constant in time and points in the z-direction, i.e. = (O,O,BO) .

B
Since the magnetic field now defines a preferred direction in the plasma we must allow for

perturbations to the equilibrium which vary as
exp i(k.x - wt)

where, without loss of generality we may assume k = (O,ky,kz) . We shall not go through
the derivation of the dielectric tensor in this case. Even with the neglect of ion motion
the algebra is still rather tedious. Instead, we simply note the important fact that due
to the presence of the equilibrium magnetic field in equation (3.1) the x- and y-components
of the fluid velocity are now coupled together, in contrast to the field free case. This
results in some of the off-diagonal elements of the dielectric tensor being non-zero.

Once we have obtained the dielectric tensor g{w,k) we can again write down the dispersion
relation from equaﬁion (2.16) . This time however all the elements of ¢ (w,k) are non-

zero for the most general case. The dispersion relation can be written formally as

2 2 2
a2 e @2 S
c2? o2 XY o2
2 2 2
Lo -k22+-“’—e kkz+2—ez =0 . (3.2)
c2 yx c2 Yy Y c? Y
2 2 2
“’—ex kkz+9—ez -k2+“’—ezz
2 2 Yz 2 ¥ Y o2

In order to see the consequences of the presence of the equilibrium magnetic field we do

not need to analyze the most general case. Instead we shall consider two special cases.

3.1 Propagation parallel to the magnetic field

For propagation parallel to the magnetic field ky =0 . It is then the case that

Xz zX

€ = 0 = ¢
Yz zy

with the result that the dispersion relation, equation (3.2) reduces to

((2-2Le Ju2-Le J-Lc )

- ey yx e =0 (3.3)
02 C2 Yy 4
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We therefore find that, for parallel propagation the longitudinal modes are again decoupled
from the transverse modes and in fact are unaffected by the magnetic field. This was to be
expected since E1 I EO . The longitudinal dispersion relation is again

€ = 0 (3.4)
which yields the Langmuir waves previously discussed.

The first change brought about by the magnetic field is shown by the transverse
dispersion relation. Since ¢ and € are non-zero, E and E are now coupled.
Xy yX 1x 1y
This was also to be expected from our observation concerning the electron

momentum equation. The symmetry of the present problem is such that

and € = £ .
XX Yy

The transverse dispersion relation can then be written

2 2 L4
(k2 - g_ € x) = - ﬁ_ 52
z c2 X ot *Y
so that the two transverse modes are given by
2 2
k§ - Exx = + i w” gx . (3.5)
c? c2 > 4

Equation (3.5) can now be used in equation (2.16) to obtain the wave polarization giving
E = + i E - (306)

We therefore obtain the result that transverse electromagnetic waves propagating
parallel to the magnetic field are right or left hand circularly polarized. The dispersion
relation for these transverse modes can now be obtained by substituting the following

explicit expressions for exx and ¢ ’

Xy
wze
e = 1-— (3.7)
2 _ 02
XX (w Q e)
i wzeQe
e, = — e (3.8)
Y w(mz - 92)
e
into equation (3.5). The result is
o2 w2
—_—y = - .9
W ! wlw * Qei (3.9)
where Qe = e Bo/me > 0 . The cut-off frequencies, w1 P of the right and left hand
’
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modes are no longer given by uge but now depend on the magnetic field as well as the

density
. Q w2 172
w o, = S F1+(1+4 5%9) ] . (3.10)
e

However, the most striking effect of the magnetic field is the existence of a propagating

branch of the right hand mode for w << Qe and “ﬁe >> w@e giving

c%k2 w2,
~ T -R° . (3.11)

2 wR

w e

The left hand wave is evanescent but the right hand wave propagates. This branch is known
as the WHISTLER due to the dependence of the group velocity on wl/2 . The received signal
has therefore a falling tone. Whistlers are electromagnetic waves which can propagate with
phase velocities, vph << ¢ and have been observed in the ionosphere, laboratory
discharges, and in a rod of indium at liquid-helium temperatures. The properties of the
waves propagating along the magnetic field can again be displayed in the w-k diagram

shown in figure 2.

LH

k

Fig. 2 Dispersion relation for the electromagnetic waves propagating along the
equilibrium magnetic field (RH - right hand circular polarization, LH - left hand circular
polarization) where w, , are defined by equation {3.10)

’

3.2 Propagation perpendicular to the magnetic field

For this case kz = 0 and again we find

€
Xz zX yz zy

Under these conditions the general dispersion relation, equation (3.2) reduces to

2 2 4 2
{(kz._“’_exx)w_e + 9 ¢ }(kz_w_e )
Yy g2 c2 YY u XY yx' 'y 2 2zZ

Equation (3.12} contains two factors. The second one gives

= 0 . (3.12)
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) y o2 2z
w
For a cold plasma . 1 - —%2 so that equation (3.13) becomes
w
22 w2
Y _ 1 - _pe (3.14)
w? w?

which is the same result as for transverse waves in a field-free plasma. This is due to
the fact that this wave is linearly polarized with its electric field aligned along the

equilibrium magnetic field. This wave is therefore called the ordinary mode.

Now consider the other factor of equation (3.12). This illustrates another effect of
the magnetic field which is to couple the longitudinal field Ey to the transverse field
Ex . For a cold plasma the dielectric tensor elements are again given by equations (3.7)
and (3.8). Substituting these equations into the first factor of equation (3.12) we

obtain

22 [(02 - w2 )2 - w202}
Yy - pe € . (3.15)
w? (w? - w? - Q2)
pe e

The cut-off frequencies are the same as for the previous case but now the wave has a

2 _ 42 4 2 . . . .
resonance at WIh u&e Qe where Wy 1S called the upper hybrid frequency Equation

(2.1d can again be used to obtain the wave polarization resulting in

E1 & X Qe wze

¥ = X = & ___pe . (3.16)

E1x eyy @ (w2 - w? )

“ou
When w > Q , |E << |E and the wave is almost transverse whereas for w > w '
e 1y 1x _— UH
}E1y >> E1y and the wave is almost longitudinal. The w-k diagram for the case of
propagation perpendicular to EO is shown in figure 3.
k

Fig.3 Dispersion relation for waves propagating perpendicular to the equilibrium

magnetic field (O denotes the O-mode and X the X-mode)
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The hybrid wave has two branches, one of which has a resonance at w = Wy It is worth
noting that compared with the field-free case, the magnetic field has removed the
degeneracy between the transverse and longitudinal waves which occurred at w = wpe .

4. LOW-FREQUENCY WAVES IN A MAGNETIZED PLASMA

For frequencies in the vicinity of the ion cyclotron frequency the two-fluid model is
still required. However, for w << Qi (Qi = eBo/mi) and wavelengths long compared with
the ion Larmor radius the ions and electrons move together maintaining charge neutrality.
Under these circumstances it is a good approximation to describe the plasma as a single
fluid. This is the MHD model (ideal or non-ideal depending on whether the plasma
resistivity is zero or non-zero). We shall restrict ourselves to the ideal model which is
the simplest model to describe the three low-frequency waves of a magnetized plasma. The

equations of ideal MHD are

24 yepw = 0 (4.1)

PG+ vy = - +IxE (4.2)

E+y XB = 0 (4.3)
on

UXE = -5 (4.4)

ZXI;I’ = {' (4.5)

where p , v and P are the mass density, velocity and pressure of the fluid. The
first of these equations expresses the continuity of mass flow and the second is the
momentum equation. Notice that there is no force due to the electric field due to the
absence of space charge. Apart from the force due to pressure gradients the only other
force is due to the flow of current in the presence of a magnetic field. Equation (4.ﬂ
results from the assumption of infinite conductivity so that there can be no electric field
parallel to the magnetic field. The magnetic field is "frozen in" to the plasma which
always moves so that in the plasma rest frame the electric field is zero. The final pair
of equations are of course Maxwell's equations but with the displacement current neglected
due to the low frequency assumption. The neglect of the displacement current is also
related to the absence of space charge.

It is convenient to reduce the above set of five equations to three by substituting
for J from (4.5) into (4.2) and eliminating E from (4.4) with the aid of (4.3). The

linearized version of these equations can then be written

B

~1 _ _ ﬁ
o r T Ty T (L xR < (4.6)
o8,
Tl v x (v, * By (4.7)
ap1
P + Z'(pox1) = 0 . (4.8)
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In order to close this set we must add an equation of state relating P; and p; . We can

use the adiabatic or isothermal model and in both cases obtain the relation

P = c?

1 s Py ' (4.9)

where, for the isothermal model cg = Po/p0 . Assuming a constant uniform magnetic field

pointing in the z-direction we look for wave solutions varying as
exp i(ke-x - wt)

and again take k = (O,ky,kz) . We will not go through the details but simply state the
main conclusions. First, on writing equations (4.6)—(4.8) in their cartesian components we
find that Vi and B1x are independent of all other variables. Solving for these two
variables we obtain the dispersion relation

2 2 12
W ca kz (4.10)
2 - 2
where cA Bo/pop,0 .

This is the SHEAR ALFVEN wave which propagates at the Alfvén speed Cx * It will not
propagate perpendicularly to the magnetic field and will only transport energy along the

field.

Solving for the remaining variables we obtain the dispersion relation for the other

two modes

(w? - k2c2)(w? - k2c2 - k2c2) - x%2c* = 0o . (4.11)
zZ s y s A y z's

For most laboratory plasmas cg/ci << 1 . With this assumption the solutions of equation

(4.11) are

w2 = k22(1+ =) (4.12)

Q | Q
ol

2 o 2,2
w kzcs(1 + (4.13)

Q I Q
Prlnn
N~

The first solution is called the fast magnetosonic wave (sometimes the compressional Alfvén
wave) and the second one the slow magnetosonic wave. In general both these waves are
hybrid modes but for the parallel propagation the fast wave is a transverse mode and the
slow wave a longitudinal mode. The fast wave is the only one of the three low-frequency
waves which can propagate perpendicularly to the magnetic field. Apart from its lower

velocity the propagation behaviour of the slow wave is similar to the shear wave.
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5. RAMAN SCATTERING
Let us now go beyond the linear theory discussed so far and consider the effect of
keeping the nonlinear terms contained in equations (2.1 -(2.7) . We shall discuss one of

the simplest nonlinear effects which is the interaction of two light waves to produce a
Langmuir wave. Since all three waves are high frequency only the electrons are involved.
Furthermore, the coupling can take place in one dimension.

In order to describe this effect mathematically we return to the electron fluid
equations (2.1) and (2.2), Maxwell's equations (2.5) and (2.6) and the equation for the

current but with the ion contribution neglected. In addition, we also add a dissipation

term Vo ¥ to the left hand side of equation (2.2) where v, can be thought of either as

the electron-ion collision frequency or more loosely as a term which simulates both
collisional and collisionless dissipation for the electrons.
Before proceeding with the analysis we make one important observation. The energy
density of an electromagnetic wave in a plasma with an electric field amplitude E is
solE‘Z/Z . The ratio of this quantity to the energy density noKTeof the plasma is a
measure of the size of perturbation the wave produces. It is
fortunate from the analytical point of view that for the threshold fields of many
interesting nonlinear effects this ratio is very much less than unity and hence such
interactions can be described with the aid of perturbation analysis.
Let us now write the dynamical equations with this in mind. Again splitting the
fields into an equilibrium part and an oscillating part we write the equations with the

linear terms on the left and the : nonlinear terms on the right.

bge1 KT e e
3t Yenom Bog ¥ Veler " m Bs ='El:‘~’e1“31 (%eq ey
(5.1)
KTe
+
Ye 2 ne1~ ne1
nm
0e
6ne1
5t * Poller = L (ngqZy) (3-2)
1 98,
Vv xBy- 2% * o ekynoYeg “eloRe1¥e (5.3)
%8,
vV x E1 + w = 0 . (5.4)

We know that the linear terms on the left hand

frequency waves of a field-free plasma so that

which are to be treated as perturbations will provide coupling between the modes.

begin by assuming that, initially, there is an

side will describe the linear, high
the quadratic terms on the right hand sides
We shall

incident, finite-amplitude electromagnetic
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wave present whose electric field is ETO , magnetic field ETO and wave vector ETO . We

choose the following linear polarization

Erg = (00 Eqq 0)

Brg = (0,0, Bpg)

bpo = Oimgr 00 00
The frequency wTO is then given by

Wy = uhe * ey, .

The incident wave is a travelling wave varying as

exp 1(kT0x - mTOt) .

The electron fluid velocity associated with this wave is obtained from the linearized
version of equation (5.1) and is

v, = eETO/lw (5.5)

TO ro"e
where we have neglected Ve (the effect of Ve will come in later). So far this is just

the usual linear theory.

We must now obtain the modified equations for a Langmuir wave and another
electromagnetic wave of a fregency different from wTO due to the presence of the finite

amplitude wave (wT ) . We shall find that these waves are no longer independent but

0’ %ro
are coupled together due to the presence of the finite amplitude wave.

First let us obtain the equation of a transverse perturbation which we assume to have
the same polarization as the incident wave. Taking the y-components of (5.1) ana (5.3) and

the z-component of (5.4) and assuming the perturbation varies as exp i(kx - wt) , we

obtain
02
(w2 - w2 - ck2)E = -iv g - wv, B
pe 1y e w 1y pe 1x 1z
(5.6)
ey av1 iew
+ — v —-——y-+——-nv .
£ 1x  Ox o el 1y

The collisional term can now be seen to produce a linear damping on the transverse wave and
the three quadratic terms on the right hand side of (5.6) are coupling terms. We shall
treat the damping and coupling terms as small perturbations to the linear waves whose

dispersion relation, in the absence of the pump wave, is given by the left hand side of
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(5.6). Let us now write the electric field of the transverse perturbation as Eq; to
distinguish it from the incident wave. Since the transverse perturbation is subject to
coupling to other modes we cannot assume its amplitude will remain constant. However,

since the coupling is assumed to be weak we may assume that ET1 can be written as

Epq(x/t) = Re{AT1(t) exp ilkpx - wT1t)} (5.7)
2 = 2 o+ o2
where w ] wpe c kT1

and AT1(t) varies slowly in time in comparison with the rapidly varying linear phase. We
must also be careful to take only real parts since the wave equation now contains products

of complex amplitudes.

It is convenient to express all transverse quantities in terms of the electric field.

Since we are performing a perturbation analysis we can relate B and v,

T T
to ET by means of the linear equations. We then obtain
k,
T
B = — E (5.8)
T W, T
ieE
v = - — (5.9)
T e
where BT and VT are written instead of B1z and v1y and may represent either the

incident or perturbed transverse wave. Since we are describing a process in which an
incident transverse wave (T) is transformed into a scattered transverse wave (T’') and a

Langmuir wave L
i.e. T = T' + L

we shall refer to the perturbed electromagnetic wave as the scattered wave. The coupling
terms on the right hand side of 6.6) must consist of products of a transverse field and a

Langmuir field. It is clear that the Langmuir fields are Vv xand n . We shall

1 el
represent the Langmuir wave amplitude by its electric field E1xwhich we denote by EL and

again expressing Vix and N4 in terms of EL by means of the linear equations we
obtain
iw €
L0
= - E .
YL en_ L (5-10)
0
ik_e€
L0
= - E . .11
e e L (5-11)

We may now obtain a non-linear differential equation for the scattered electromagnetic wave

by expanding (5.6) about the linear solution and identifying w with 1d/dt to obtain
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. OAp1 . Ye i Sdpiky »
exp {ilk,,x wT1t)} 5 - e Byt 3w EEq, - (5.12)
wT1 TO

In order to obtain the final form of this equation we put

E. = Ref

0 exp i(kpy - wTOt)} (5.13)

ATO

and write EL as the product of a slowly varying amplitude and the linear phase

E (x,t) = Re{A (t) exp i(k x - v} . (5.14)

The only significant nonlinear coupling terms will be those which satisfy the frequency

and wave number matching conditions

Wpg = Wrq + W, (5.15)
kTO = kT1 + kL (5.16)

whose physical interpretation is the conservation of energy and momentum. Using equations

(5.13)-(5.16) in equation (5.12) we obtain the equation for An,

2
Bry Ve “pe 1 %Ky —igt
+ pe , = 1 _L % (5.17)
ot 2 2 T1 4 w,m_ L TO
Whq TO0 e

where we have imposed perfect k-matching but have allowed for a small frequency mis-match
b= g T Wpg T Y
The equation for EL is obtained in a similar way. Again assuming an exp i(kx - wt)
dependence and taking the x-components of (5.1) and (5.3) together with equation (5.2) we

obtain

2 42 - 2 = =i 2 .
(w wpe Yeksze)EL iv uE, + Qpev1yB1z . (5.18)
In this case the only coupling term comes from the v x B force in the momentum equation
since this is the only term which consists of a product of transverse fields. Expanding
(5.18) about the linear solution, using (5.10) and (5.11) and imposing the matching
relations (5.15) and (5.16) we obtain the equation for AL(t)

2

OA;, Ve 1 %% Xp * -igt

® T2 A T In o ProPri © . (5-19)
e¥ro%r1 YL

Equations (5.17) and (5.19) describe the coupling between high frequency transverse and
longitudinal perturbations in the presence of a finite amplitude transverse wave. Under

these conditions we have ATO >> AT1 and ATO >> AL . We may therefore linearize
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equations {5.17) and (5.19) by assuming that the incident wave amplitude remains constant.
* _1
Using AT1 and ALe i¢e

coefficients so that a solution proportional to exp(-iQt) may be assumed. The dispersion

as the amplitudes the coupled equations then have constant

relation for the coupled waves is

. PR 2=
(@+ ivy)(@+ iy $) + COLCO1\AT0‘ 0 (5.20)
where
\ v w? ew? k
y = =2 y. = == P c = —RelL
’ ’
L 2 T 2 w2 01 4meu&0qr1wL
T1
ek
L
and (o] = — .
oL 4meu>T0

If we neglect the damping terms and put ¢ = 0 we obtain a growing solution with growth

rate

= 1/2
Y (CorC01) |AT0| . (5.21)
Putting COLCO1‘AT0|2 = K we obtain the threshold condition for instability

¢2YTYL
K = y.y, + . (5.22)
T'L (Y +y )2
T L

Clearly, the minimum threshold occurs, as expected, for perfect frequency matching. For an
incident wave whose amplitude exceeds the above threshold a scattered electromagnetic wave
and a Langmuir wave would grow out of the background noise. In terms of the plasma

parameters the threshold can be written as

2
v v v
4
MU ——we —we (5.23)
2 252 T "L

VTe kL)\De

where A = v /w and Vv is the velocity of the electron fluid in the field of the
DE Te' pe 0

incident wave. For parameters typical of laser plasmas vg/v%e << 1 in keeping with our

perturbation analysis.

The above interaction is just one example of a whole class. We can use this example
to illustrate some important conservation relations which such interactions satisfy. To do
this we must first obtain the nonlinear equation for the incident wave A whose

TO

amplitude is no longer assumed constant as we must relax the constraint that ATO >> AT1

and AL . The equation for ATO can be obtained from equation (5.6) and is
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1

2
OBng Y, “pe 1 ek, igt
2 TO 4

e

+.—. = . .
3 > A A_A_.e (5.24)
o

Equations (5.17), (5.19) and (5.24) now form a closed system of coupled nonlinear
differential equations for the three waves, two transverse and one Langmuir. Using the

result that the wave energy densities of transverse and Langmuir waves are given by

1
Pp = 2 % IET|2 (5.25)
2
w,
1 2 L
o) = = € lE | —_ (5.26)
L 2 0 L 2
pe

we normalize the wave amplitudes to the total energy density carried by each mode as

follows

80 1/2

3p0,1 ~ ) Ao, 1 (5.27)

. ) (ig)l/z o,

L 3 m AL . (5.28)
pe
Neglecting the damping terms and assuming perfect matching the equations for the
interacting waves are
da
TO
oy = FwTO aT1 aL (5.29)
da
T1 *
i FwT1 an, 2L (5.30)
2r r ¥ 5.31
T T L & (5.31)
k. w
2 (/2 ekl
where r = (E—) 4m ;L uf w -
0 e T1 TO L
With the aid of equations (5.29)-(5.31) it is straightforward to show that
5 (l2gol * lagy |2 + o ]2
v + + = .
5 (2 %1 a,1?) 0 (5-32)

which corresponds to the conservation of energy for the interacting waves.

. . 2 :
A more revealing result concerns the wave action density Ian| /wn . Calculating the rate
of change of this quantity from equations (5.29)-(5.31) we obtain the Manley-Rowe relations

(first discussed in the field of electronics)
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12 = g lanl? - & el

— = |a = — = |a (5.33)
o TO Wnq ot T1 w ot L

which shows in what proportion the energy from one wave is divided between the other two -
the lowest- frequency wave receives the least energy. The coupled equations can also be
used, with the aid of perfect wave-number matching, to demonstrate the conservation of
momentum in the interaction. These general conservation relations are characteristic of

all three wave interactions.

5.1 The beat-wave accelerator

To conclude this discussion we will consider the application of this interaction to
the acceleration of electrons. We noted earlier that the longitudinal Langmuir wave could
propagate with a wide range of phase velocities both greater and much less than the
velocity of light. Since the Langmuir wave is longitudinal it can accelerate electrons
provided it has a finite amplitude since an electron travelling close to the phase speed of
the wave will be trapped in the potential well of the wave. An electron with the correct
phase will then be accelerated from the bottom of the potential well to the top gaining
energy from the wave. If two laser signals are launched into a plasma such that they
differ in frequency by the Langmuir wave frequency their beating will generate a Langmuir
wave. The energy transferred to the Langmuir wave will be subject to the constraint given
by the Manley-Rowe relation. The three wave interaction can also be represented on an w-k

diagram which is shown in figures 4a,b.

(a) . ® :
7 (wyo kyo)
Wy k)
(wyo, k1ol
L
(wLﬁL)
k k

Fig. 4 Nonlinear coupling of two transverse waves with Langmuir wave
(a) wpq ~ Wpe (b) wpy >> Ype

Figure 4a is for the case where the lower frequency laser is comparable to the plasma
frequency and figure 4b where the lower laser frequency is much larger than the plasma
frequency. These two cases correspond to high or low-density plasmas respectively. In the
first case more energy would be coupled to the Langmuir wave but it would be excited at
phase velocities below the speed of light whereas for the second case the Langmuir wave
would travel at or near the speed of light but would receive proportionately less of the

laser energy and so would require more power to generate the same strength Langmuir wave.
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Despite the constraint imposed by the Manley-Rowe relation the second case is the
favoured one for the beat wave accelerator since all three waves travel close to the speed
of light. 1In any case the practical situation is more complicated since both laser fields
can act as pumps thus giving rise to further waves. 1In addition, since w << w_, not only

L T
the down-shifted wave but also the up-shifted one, wT + wL, kT + kL, must be included.
The division of energy is now more complicated. However, no matter how many additional
couplings are included the basic interaction is still given by the previous discussion of

Raman scattering.

To give some idea of the possibilities offered by the beat wave accelerator we use

present neodymium-glass lasers as an example. These lasers can presently deliver ~

5 x 1013 watts. For two such lasers with beam widths ~ 1mm the intensity ~ 1016 watts /
cm2. The generated Langmuir wave can then have longitudinal electric fields ~ 108

volts/cm which assumes a perturbed electron density 6n/no ~ 0.1 in a plasma where n° is in
the range 1016 - 1018cm-3. If the beat wave could be maintained over a length ~ 5m then
an electron injected with 1 MeV energy could, in principle, be accelerated up to 50 GeV in
the above distance. However, present experiments are only in the very early stages. 1In
particular, Langmuir wave electric fields ~ 108 volts/cm have been generated but only over

a distance of imm. The reader is referred to the original work for a detailed discussion

of the above points.
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LANDAU DAMPING

H.G. Hereward
United Kingdom

ABSTRACT

Landau damping is a process that arises when one consi-
ders a whole collection of particles or other systems
which have a spectrum of natural frequencies, and
interact in some way. In accelerators we are usually
concerned with an interaction of a kind that may make
the beam unstable, and we want to find out whether or
not the spread of natural frequencies will stabilize it.

1. SPECTRUM OF LINEAR OSCILLATORS

I shall start by looking at a simple model, a collection of harmonic
oscillators with a common driving force that comes from their average
displacement. This is in fact quite a good model of the transverse coasting
beam instability of the kind seen in the ISR.

+ w2 x = (1) (1a)

f(t)

c<x> . (1b)

The triangular bracket means average over all k and I use c to stand for
some complex constant. Later we shall look at the meaning of its real and
imaginary parts.

The obvious method of attack is to assume that everything depends on
time like exp jwot and look for values of , real or complex, that enable
Eq. (1) to be satisfied. Put

Xg X, exp jot (2)

Then Eq. (1) becomes

1
X, = €<X> —5—3 . (3)

For simplicity I shall assume that all g and w are close to some
positive wg, and make the approximation

wk2 - w? = 2wo(wy - w) (4)

so Eq. (3) becomes




- 256 -

and now average this over k, with p(w) the normalized spectrum of parti-
cles' resonant frequencies
c olwk) duwg
2 wg we "W

(6)

The wk are real and you have to integrate over all the g where p is not
zero. If o is real and falls within that domain, the denominator goes to
zero and the integral is singular. This is the difficulty that makes Landau
damping a non-trivial problem.

There is little use in struggling against this singularity by mathema-
tical tricks, already from Eg. (3) you can see that there is no finite
solution of the postulated form Eq. (2) when ¢ is real and falls upon one of
the wg. There are several ways of proceedingl). For our purposes the most
simple is to remind ourselves that what we want to know is whether the
system is unstable or not, so we are interested in the possibility of
exponentially growing solutions:

w=Re o+ JjImeew, Imwc<o (7)

That removes the singularity from Eq. (6), but it remains quite
difficult to solve it for  given p and c. The procedure initiated at
CERN2) is a mapping technique. We write Eq. (6) as

c [ plok) du -1
2 wp ( wKk - W (8)
and evaluate the right hand side for all relevant values of Re w with
Imw = - |g|. The result is plotted in the complex plane and gives a curve
which is the locus of values of c¢/2wg at which the system is just unstable.

The real part of the integral tends to

pluwg) duk
wk - Re w ) (9)

You then have the resonance dominator and the spectrum, Fig. 1, and for each
value of Re w you combine them and integrate over the particles. P.V.
(principal value) means that the + » at Re w are cut out. The denominator
is an odd function of wx - Re w, so it 1is the part of , that is
antisymmetrical about Re u that contributes to this real part.

The imaginary part of the integral comes from passing close to the pole
at u, and tends to

_j T p(Re u)) . . (10)
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(a)
1 (© Imc
Denominator
(b)
+ Rec
Fig. 1 Evaluation of a point Fig. 2 Stability diagram
on the stability diagram. for a bell-shaped

spectrum of oscillators.

When it is drawn with certain normalizations and conventions, this
threshold curve Eq. (8) in the complex plane is known as the stability
diagram. It is a property of the shape of the spectrum p. For reasonable
and simple spectra p the stability diagram is fairly simple, like Fig. 23),
and it is easy to see that the side containing the origin is stable, the
"far" side is unstable. If you want to know something about growth rates in
the unstable region, there is no problem in computing Eq. (8) for all Re o
with some chosen negative Im w, to get the contour corresponding to that
growth rate in the c/2wy plane.

Some particular features of these stability diagrams should be pointed
out. Since p is positive and |e| is positive, the threshold curve lies
entirely in Im ¢ > 0. This corresponds in Eq. (1) to a force component in
phase with the velocity <x>, such as one needs to make antidamping for a
single particle or delta-function spectrum. When the spectrum p does not
have infinite tails, there are two points (a) and (b) on the threshold curve
where it comes down almost to Im c = 0. They correspond to putting o at the
top or bottom of the spectrum, and for typical bell-shaped spectra one finds
them at

C
2wg

= 7 0.8 suyyg * Ife| (11)
where Awyyp 1S the base half width of this spectrum .
This has a simple physical interpretation: If we go back to Eq. (1) and

forget about the spread of frequencies, we see that a real c just
corresponds to a real @-shift of - c/2wg. So Eq. (11) is saying that an <x>
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tune-shifting term a little less than the base halfwidth of the spectrum is
just enough to move the coherent frequency w outside the spectrum of the
particles, and this kills the Landau damping, in the sense that then an
infinitesimal antidamping component of force will produce growth.

Then there is the point (c) where this threshold curve crosses the
imaginary axis. Consider Re w on the peak of a simple symmetrial spectrum,
the real part of the integral vanishes by symmetry, the imaginary part comes
entirely from passing close to the pole at w, giving

2wy TP

or

13
o
(=)}
[N
>
€
s o
=
=X
=

where AwfyHM and AwyyHM are the full and half widths of the spectrum respec-
tively at half maximum.

This means that a finite amount of antidamping component (positive
imaginary, in phase with <i>) is needed in c to produce even an infinite-
simal growth rate at a frequency within the spectrum, and this is because
the response of the spectrum of particles comes only from the small fraction
of them that are close to resonance. This the key to a physical under-
standing of what goes on in Landau damping situations, so it is worth while
checking over the orders of magnitude.

A growth rate o corresponds to a bandwith a, soO the fraction of the
spectrum that responds as though on resonance is of the order of o/ Aw. We
can approximate Eq. (6) by

¢ of Aw
L~ Tog Tia (13)
SO
L 14
2(»0 =~ JAw ( )

which confirms Eq. (12). One needs that sort of c to produce a growth rate
a however small. Smaller growth rate of a resonant system requires smaller
positive feedback, but this is provided by the smaller number of particles
which count as being on resonance, without appreciable change of c.

Before leaving this model it is worth while to relate the complex
coefficient ¢ to the quantities U and V that you will meet in the literatu-
re3) of transverse instabilities. The betatron modes that are potentially
unstable correspond to the so-called slow waves which have frequency
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wy = Qrev(n - Q) (15)

*
and for these waves one has the correspondence )

R ==
e Zwo = -
(16)
Im5—= V
m 2wg

where I use always the exp(+ jwt) convention.

The calculated stability diagrams for different shapes of spectrum can
be made universa]*) by plotting normalized values,
oo Y
AwHHM

(17)
v

BwywHM

2. LONGITUDINAL INSTABILITY

Landau damping of longitudinal instability in a coasting beam is rather
similar to the oscillator problem just discussed, but there are important
differences which make it worth while handling the problem by use of the
Vliasov equation. This is

d¢ . d¢ . d¢

at 0 30 - aw ’ (18)
where ¢(e, W, t) 1is the distribution function in longitudinal phase-
space, 0, W.

By first order perturbation and Fourier expansion in o one can get the
linearized equation of motion for the n'th azimuthal harmonic of the
perturbation®)

og, (W,t) 3o
%t " jlwg + koW) Ep(W,t) = - eVp e (19)

with Vg = - € Znwy J En(W,t) dW . (20)

*) Sometimes U + V is written where we have U, see Ref. 4.
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Although this pair of equations 1looks much more complicated than Eq. (1),
there are important similarities: the 1left hand side of Eq. (19) is a
differential operator with characteristic frequency n(wg + kgW) which varies
with W across the spectrum of particles present, and the driving term on the
right of Eq. (19) involves V which is an integral (just as in Eq. (1) it was
an average) over the spectrum, of the responses g. Z, is the longitudinal
coupling impedance.

We use the same method as before, 1looking for oscillatory solutions
with a slow exponential growth

En(W,t) = Xp(W) exp jot (21)

w=Re w+ jImw Imw<oO (22)

and Eq. (19, 20) becomes

dgo/dW
w =N jlwg + koW)

1 =e? Zpw J 3 dw . (23)

The mapping technique then consists in evaluating that integral (called
dispersion integral) for all relevant values of Re w, with Im ¢ = - |e|, and
so obtaining the locus of values of Z, at which the system is just unstable. A
typical shape for a simple bell-shaped spectrum is shown in Fig. 3
different spectra have been calculated 25356),

, and many

ImZ

Fig. 3 Longitudinal stability
diagram for a bell-
shaped spectrum (above
transition)

ReZ
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The main difference between this longitudinal, Fig. 3, and the trans-
verse, Fig. 2, is that the longitudinal stability limit passes both to the
right and to the left of the origin, showing that instability can be caused
by either positive or negative resistivity in Zg,. This is due to the
occurence of d¢o/dW in Egs (23) and (19), which in turn is because W is both
the quantity that determines the particle's natural frequency in the left-
hand side of (19) and in the denominator of (23), and also one of the
canonical variables in (18). Equation (18) can be written as a total
differential

which implies that phase-space density in the @, W plane is conserved
(Liouville's theorem). When one has conservation of phase-plane density,
the particles move in the phase-plane like an incompressible fluid, and any
perturbing force can only produce a change in the distribution by acting on
particles that are where there is some gradient in the unperturbed phase-
space density. Hence the appearance of d¢g/dW in Egs (19) and (23), and the
left- and right-hand sides of Fig. 3 are associated with the top and bottom
flanks respectively of the spectrum ¢o(W), where dg¢o/dW is negative and
positive respectively.

The relationship between Jlongitudinal coupling impedance and the

quantities U and V of the literature are sufficiently discussed in Refs. b6
and 7.

3. NONLINEAR OSCILLATIONS

The third kind of Landau damping that can arise in accelerator beams is
due to nonlinearity of the oscillations. On the face of it, this non-
linearity combines with the spread of unperturbed oscillation amplitudes to
produce a spread of the natural frequencies which might be dealt with by the
method of section 1, but this is wrong. There is a discussion of the
details of why this is so in Ref. 8, but a fairly straight-forward way to
get the right answer is to proceed via the Vlasov equation. One can make

some simplifications9) compared with the treatment of Ref. 4.

Consider a collection of particles in a nearly harmonic potential well,

X + woz x + nonlinear term = 0 . (24)
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In terms of amplitude and phase, the orbits are

X = a cos ¢ + small terms
(25)
X = wg @ sin ¢ + small terms
or a =0, ¢ = - w(a) if we neglect the small terms.
The Vlasov equation
[e] ) w 0
2, X 2, X —$ =0 (26)
at X X
for the density ¢ in the phase-plane can be written as
8¢ , 2 3¢ .04 _
ot "3 T 050
or (27)
3¢ 3¢ _
ot - wl) 5 7 0

A distribution ¢go(a) of only amplitudes is stationary.

Now add a driving term f to the RHS of Eq. (24), and the corresponding

0
term f g$ to the LHS of (26) and (27). Small oscillations about the sta-
X

tionary solution

b = dgla) + ¢ (a, ¢) edut (28)

are described by the linearized Vlasov equation

. 3¢, sing d¢o

Jwg; - w(a) YR f o da - 0 (29)
where the identity

d¢ sin ¢ ?¢

—0 _ —0 (30)

X wo da
has been used.

If we neglect the exp(-j¢) part of sin ¢, and assume that the driving
term f(x) is approximately constant in.the region of the beam, then the
¢-dependence of ¢; is ¢;(a, ¢) = ¢;(a) ed® . The neglected part of sin ¢
produces only rapidly oscillating terms which are negligible when w is close
to w(a)

f d¢0/da
(@) = 7 o W) (31)

From this ¢; the barycentre motion can be obtained by integration and
the 1loop closed by finding the electrodynamic properties of the beam
environment in the usual way"“).
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This nonlinear oscillator case resembles the longitudinal case in that
the beam response comes from the part of the spectrum where there is some
phase-space density gradient, and that ¢, gradient appears in the dispersion
integral not ¢ itself. On the other hand, it does not imitate the longitu-
dinal stability diagram by going both left and right of the origin for an
ordinary simple distribution, because an ordinary simple ¢go(a) starts at
some peak value at a = 0 and only has negative d/da, unlike a simple
longitudinal ¢g(W) which has positive and negative d/dW. Some examples of
these nonlinear transverse stability diagrams are given in Ref. 3.
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BUNCHED BEAM COHERENT INSTABILITIES

J.L. Laclare
Laboratoire National Saturne, 91191 Gif-sur-Yvette Cedex, France

ABSTRACT

In this chapter, we will deal with coherent longitudinal and trans-
verse instabilities. It is a collective phenomenon which prevents
one from increasing the current circulating inan accelerating device
without losing the beam or spoiling its characteristics.

1. INTRODUCTION

The origin of the mechanism is the electromagnetic field created by the beam itself.
This self-field is proportional to the beam intensity. Furthermore, like any solution of
Maxwell's equations, because of boundary conditions, it depends strongly on the geometry
and the electromagnetic properties of the environment. When the intensity gets large
enough, it becomes sizeable in the sense that it cannot be neglected anymore when compared
to the external guide field.

Dealing with coherent instabilities consists in solving the equation of motion of a
population of particles whileadding the self-field effect. Obviously, the self field per-
turbs the single particle motion, but this is not the remarkable effect. The important
point is that under certain conditions the beam as a whole is unstable.

In literature, there is a countless list of contributions to the subject. The first
to come have been written in the fifties. Nowadays, the subject is still in fashion. Many
reports per year are being produced. This shows how difficult and important the subject
is.

During these two chapters, I will review the fundamentals of coherent instabilities.
In this respect, F. Sacherer's work is certainly the basic source. The main material for
this chapter is drawn from the numerous reports he wrote about ten years ago. Numerous
developments are derived from B. Zotter and G. Besnier's contributions.

In the following, we will only study bunched beams in circular machines; first
longitudinal and then transverse motion.

2. LONGITUDINAL INSTABILITIES

2.1 Single particle longitudinal motion

With respect to the synchronous particle that circulates at the angular revolution
frequency

W, = ’;‘ (1)

and crosses the Radio Frequency gap when the RF phase is q& , we describe the single par-
ticle motion with a pair of conjugate coordinates

T and t:.‘-‘li . (2)
dt

For a fixed observer located at azimuthal position © around the machine, T expres-—
sed in seconds represents the time interval between the reference particle passing and the
test particle passing. The second coordinate

iﬁ:- dw

Py w, (3)

=

measures the instantaneous momentum deviation of the test particle. The parameter 1 is
negative below the transition energy.

A A (4)
I’l t: XL .

In smooth machines 'Xt is of the order of (Qx (horizontal wave number).

We assume a purely linear synchrotron oscillation around the synchronous particle at
frequency u%o.
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T+ W, _C:-0 (5)

2 - wov JLCO’.»(P
T

R is the elementary charge

R the machine radius

P the synchronous particle momentum
Vie the peak RF voltage

Jﬁ the RF harmonic number

In (T, T) phase space the trajectory associated with the unperturbed motion is an
ellipse (Fig. la).

-2
et L, (7)
OJ$°

a) b)

Fig. 1 Synchrotron motion in phase space. a) Phase space (1, 1)
b) Normalised phase space (1, t/ug,) or (T, ¥)

. This ellipse becomes a circle when using a set of normalized coordinates like € ,
X or phase and amplitude coordinates y , z (Fig. 1b).

As stated from the beginning, we are mainly concerned with the electromagnetic field
induced by the beam. This field has electric and magnetic components. It modifies the
differential equation of motion (5) of the single particle by adding a term in the right
hand side of the equation

. 2 - —_ =
C+QS°C :.’!L‘l_ff:lc[E+[scABJ(}c,e) . (8)
P IE " T z

2.2 Single-particle longitudinal signal

With the object of writing down Maxwell's equations the solution of which leads to
the beam self-field, one needs to express the local charge and current at time k and posi-
tion © in the machine. Machine physicists are used to observing the intensity on an oscil-
loscope by looking at the signal drawn from longitudinal P U electrodes. These electrodes
are non-destructive diagnostic equipments which measure the electromagnetic field locally
induced by the beanm.

Let us assume a perfect P U electrode located at angular azimuth @, and analyse the
intensity signal when a single test particle oscillates in the external guide field (no
self field added). This will help us to get more familiar with time domain and frequency
domain.

In the time domain, the elementary intensity signal Amq(k,e) is a series of nearly
periodical impulses delivered at each passage through the electrode.

hzto
/‘)/(k 6):6;5(&—('-9_-2&) Ampere (9)
7 -0 W W

S is the Dirac function.



- 266 -

By using the following relations,

ﬂ:«c = 40
u.:}c-t-g %Z: S(AL-L%): 2-'& IS L (10)

n ps-e

z:=T ws(w k+4.) (11)
- wo'A(, wh(w b +Ye mare m,(w t+y,
c ’}P Y) - Z.: l}-/m, Jm(PwofC) c'} So ‘H (12)

where b is the synchrotron phase at time /{',:o
it can be rewritten in the equivalent form

. f:'"‘:’"’ 1(w k_pe 4m )

- . pt ~PO + e
hl[(tle) z &0 Z '} Jm(fwot') ¢ (13)

in pm=-o
in which W, = pW, +Mm Wy, . (14)
The Fourier transform of the elementary signal is given by
b=+ -,’wt
,s”(w,e):"_ J ,s//(t,e) c dt . (15)
L.

With the Fourier transform we can pass on to frequency domain. The actual spectrum of
our single particle moving in the external guide field is a line spectrum at frequencies

wrm

P,‘H\:H’O

A, (w, )= e Z i Jm (fu)ofc) Cj(re-m‘f‘,) 3(“""“”nm) . (16)

I fm=mo

Around every harmonic of the revolution frequency, there is an infinite number of "
synchrotron satellites. The spectral amplitude of the mth satellite is given by Jm(pw,t)
(Bessel function of order m). The spectrum is centered at the origin and spreads in the
negative and in the gositive frequency domain. Because the argumept.of the Bessel functions
is proportional to , the width of the spectrum behaves like (Z) . As a consequence,
when considering a bunch, particles with small (large) synchrlgtron amplitude contribute to
the high (low) frequency part of the spectrum. At the limit T-—»0, the synchrotron satel-
lites disappear. The synchronous particle resumes the observation point periodically. Its
spectrum is a line spectrum at harmonics of the revolution frequency.

=420 1o
/5// (uj'e) - _i_%o ;m J;tru)o%) QJF 5(0)-')(.00) (17)

2.3 Distribution of particles

The next step consists in gathering particles to form a bunch (aﬁ single bunch for the
moment). Therefore we have to choose a distribution function C_P'(,LO,Z///&) which will
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indicate the particle density in phase space.

The signal or the electromagnetic field induced on the P U electrode by the entire
beam is obtained by summing up the elementary signal of individual particles over the dis-
tribution.

o:LTr i;#o
AS// (£,8)= N W(‘fo ,il /l:) /a”(k,o)? J%J\{), (18)

"’°=° tzo

where PJ is the number of particles per bunch.
For obvious reasons of normalization, ¥ has to satisfy equation (19)

J‘T’Jv:i (19)

2.3.1 Stationary distribution of particles

First, let us consider a stationary distribution, that is to say a distribution that
depends on solely.

Ty, 54 = 48) .

For such a distribution, as it was already the case for the synchronous particle, the fre-
quency spectrum of the electromagnetic field induced on the P U electrode is a line spec-
trum at harmonics of the revolution frequency.

A

=40 S T=t0 .
S// (w,e) = inl %:: 5(“"1"‘%) e,” J;(P“’oi) clo(’i)ttlc (21)
" o

where ]: is the intensity in one bunch.

I._.New,

. (22)
i
The amplitude of the spectrum at frequency rcﬂo is given by
A
T=+0
A ALA A
9P = J(pat) g2 de (23)
Z=0

There is no synchrotron satellite and therefore no evidence at all of an internal syn—
chrotron motion. Turn after turn, each small volume of synchrotron phase space that rotates
at fixed distance from the synchronous particle is replaced by an equivalent volume with
the same density.

The stationary distribution gives the average density. It can be adapted to simulate
different types of bunches.

A few typical examples are given hereunder. In these examples, zl. represents the
full bunch length (or 4 standard deviations in the gaussian case). To make the writing
easier, the dimensionless variables

A A
zZ=_t Z-.t and B-w-12, (bunching factor) (24)
Te T P
b Z

are used.
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- Parabolic amplitude density ( o< 2 (A )

- _ W (o
3(2) :_ ("’ ) Az) _\—)(A Z-) ) (w,e)- 3]'-2?‘- S(w'f“’o)" —r?‘;“(;)s) (25)

~
— Parabolic line density suitable for proton bunches (0 ¢z <4 )

A “l‘/b 2y - —Jre—'
%ﬂ(z):}z_u%_c__..)‘(/‘-z )Y Nz)= 39 (-2 ; S,/O(w,e).. 31%3((»-,»,)& v%r (5:1(‘(;)2/; 6)
2 2
- Gaussian amplitude density suitable for electron bunches (O < % I ao)
A -1z* .).z2 4po -(pmB)”
q.2) “’-l e ;M)\ ?L ; S,/o(w, =T % Sleo-pu,) i g2l (27)
('iL) 2
- "Water bag" bunch ( o < 2 <4 )
5 _ 1 T (p8)
R R L e
2 04

The line density X(t') is the projection of the distribution 30(%) on the T axis.
)\(t) = } 1(2) de J)\(z) dz - A (29)

\J ws

1]

2
The corresponding power spectra | 5,/, (w,8) ‘ (. Fig. 2a) and single pass signals
( Fig. 2b) are drawn for comparison. The spectrum is peaked at zero frequency and extends
x UT/‘:L rad/sec.

‘5 (w e)

(25>
g
2 T
: 2

Fig. 2(a) Power spectra for various particle distributions
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Fig. 2(b) Line densities for the various particle distributions of Fig. 2(a)

As will be pointed out later on, in Vlasov's equation, for the longitudinal case,
the quantity of interest is dﬁe/q% or dAde . In this respect, the choice of dis-
tributions like the "water bag'" distribution must be avoided. As a matter of fact, it
shows a sharp discontinuity at its edge that leads to unrealistic results since it atta-
ches too much importance to large amplitude particles.

In the rest of this lecture on longitudinal instabilities, we will mainly use the
distribution with parabolic amplitude density. On one hand, it is a good compromise bet-
ween proton and electron bunches. On the other hand, according to my own experience, the
three realistic distributions listed above lead to results that do not deviate by more
than 20%.

The electromagnetic field induced by the stationary distribution is at harmonics of
the revolution frequency. As a consequence, it acts on the beam as the external RF system
does. First it is responsible for synchronous phase shift. Then, it can depress or increase
the focusing. It can also introduce non linear terms because of the rich harmonic content
of the spectrum.

Nevertheless, the internal synchrotron motion of individual particles is hidden and
one cannot expect any excitation of coherent motion without any force at harmonics of the
synchrotron frequency. So, we need a new ingredient in order to get a scenario of initial
conditions that can lead to instability.

2.3.2 Perturbation

A

This ingredient consists in a distribution AW (,,Z,4) which has the property
of introducing some electromagnetic field at harmonics of the synchrotron frequency. It is
a density perturbation which represents the difference between the actual beam and the
stationary distribution. As a matter of fact, in terms of physics, a stationary beam does
not exist. On one hand, there is always some density modulation that remains from previous
beam manipulations such as injection, bunching, etc... On the other hand, the bunch is
composed of individual particles, each of them gives a rich spectrum including synchrotron
sidebands. On an average, we get a stationary bunch. Nevertheless, there is always some
remaining noise at synchrotron satellite frequencies.

The form that can be given to l&!f' is %gggested by the single particle signal (13)
and (16). In phase space, on a given orbit & , one can choose the initial 4& depen-
dence of the charge density in order to enhance the signal amplitude at a given harmonic
of the synchrotron frequency.

For instance, with
w4 Bemk |
e m# o (30)

Zl'(J.J_(~}/o RWIE 3m(i) el
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(the assumed time dependence of the perturbation will be justified at the end of this
section) one gets a perturbation signal

A
T40

AS//m(w,e) sl Zrlé(m-(rw,mwsmw%)) j-m¢'3r7l(rwoi)3m(2) zde . (31)

-Am Y,
Therefore, owing to the e,d *’ charge density, the spectral amplitude is maximum
for satellite number m and null for all other satellites.

We have defined a perturbation which is coherent with respect to satellite number m.
The amplitude of the perturbation spectrum at frequency @ = rw,-' mwg "A“’cm is given
by
‘2: +0

o (r): /}'"" . Jm(fu’"%) 3‘“(“&) 'i d% (32)

>0

In order to give more physical content to the expression of the perturbation (30),
let us imagine an injection scheme in which a bunch is transferred from a booster to a
main ring.

After transfer, when ideal conditions are fulfilled, the bunch is perfectly matched
and individual particles continue their motion on the 'same' phase space orbit.

Now, let us assume a RF phase error or an energy error at transfer. Then, in phase
space, the beam center of mass rotates around the main ring synchronous orbit (Fig. 3a).
Triggerred by the RF clock, the PU signal shows that the bunch is oscillating forwards
and backwards ( Fig. 3b). When compared to the ideal transfer (stationary bunch) a densi-
ty perturbation of ¢05 VY, ( e e with m=4 ) type has been added. It corresponds
to an excess of charges at one bunch edge, exactly balanced by a lack of charges at the
opposite edge.

Using instability terminology, a coherent dipolar perturbation has been induced.

If one neglects the electromagnetic self-field influence, then, this figure rotates
at frequency s, in phase space. The power spectrum of the signal has two components,
the spectrum of the stationary distribution at harmonics of the revolution frequency and
the spectrum induced by the perturbation at PR, + wWs, . This last component is peaked
at higher frequency w v Lﬂ,’tl since it represents details with short wavelength occur-
ring during the bunch passing ® -

If one takes the electromagnetic self-field into account, then, two major effects are
expected.

- Firstly, we will get a shift of the synchrotron frequency ¢J¢, . The field induced by
the stationary distribution at p@d, acts on the beam like an RF system does. It modifies
the external focusing. This shift

dw, = W - W, (33)

will be called incoherent synchrotron frequency shift.

- Secondly, the perturbation will not rotate at the incoherent synchrotron frequency <4

but at the coherent frequency ., , 1503‘4 apart.
Aw,, = w, -w , (34)
4Au.1“b
This is the reason why the e term has been introduced in equation (30) already.

At the same time “"So has been replaced by qu .
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a) a)
L5,
b) b)
2 2
JS/(w,o)l \ IS,(w,O)'
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0 w w
c) c)
Fig. 3 Dipole mode of longitudinal bunch Fig. 4 Quadrupole mode of longitudinal

oscillations

bunch oscillations
a) Phase-plane diagram
b) Line density as seen on a pick-up
c) Frequency spectrum for the dipole/quadrupole mode
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Aw%is called coherent frequency shift.

The line spectrum of the perturbation which was at Fu% + Wg, for zero current, is
now at Fco° + w‘__ .

The goal we aim at consists in finding out the expression of both quantities ZSuJ;
and 13uo¢h1 . We will assume that Zluo¢nt is a complex number. Its real part will give
us the real coherent frequency shift. The sign of its imaginary part will tell us whether
the initial perturbation will grow ( Im( Aw(_m) < 0 instability) or will be damped
(I, (Bwey)>o stability).

As a second example, let us describe a coherent quadrupolar perturbation. One can
assume an error of RF voltage in the main ring. In this case, because of the focusing mis-
matching, the transferred beam has an elliptical shape in main ring phase ( Fig. 4a).

This corresponds to a <o < ¥, ( e ™Y with m= 2 ) density perturbation. The
ellipse has a twofold symmetry in phase space. It repeats at the coherent frequency w. ,
that is to say at twice the incoherent synchrotron frequency g plus the coherent fre-
quency shift AODw,., -

ZSLU%; = U)c - 2'(05 . (35)

Since we have to describe more and more details during the bunch passing T, , the
perturbation signal is peaked at higher frequency again W ~ 3n/t, (Fig. 4c). The
electromagnetic field induced by the perturbation is at

PWot+ & ~0Lp Kt (36)

(‘Jc:lwso for zero current and ¢ = Zws + AuJ“_ for I#O

There is an infinite number of possible coherent perturbations

m=1 dipole
m=2 quadrupole
m=3 sextupole, etc...

For zero intensity,

w T mw (37)

the frequency separation between two adjacent coherent perturbations is Wg, -
For T4¢0,

W,z MWyt Aw, . (38)

one can distinguish two regimes.

In the low intensity regime, the basic frequency separation is not Wg, but wWg
the incoherent synchrotron frequency. It has been slightly changed by the effect of the
electromagnetic field at PW, arising from the stationary distribution Aw;:w,-u/,‘ <<w5..
In parallel, the coherent frequency shift remains small AW &K Wg, . Therefore, the
coherent frequencies of two adjacent perturbations are still well separated and one can
study each of the perturbations separately while restricting to a single value of m.

—Am Aw,t
A-(_P— - jm(%) ej Y" cj e’ (30)

In the high intensity regime, the coherent and incoherent shifts get large and the
frequencies associated with two adjacent perturbations m and m+l can get very close. As a
consequence, one has to sum up several values of m in thetSﬁfexpression.
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Am o Aw L
AY - %\: csm(i) e d ¥ ¢Ij “ . (39)

2.4 Longitudinal coupling impedance

All the properties of the electromagnetic response of a given machine to the beam
passings are gathered into a key parameter, the so called longitudinal coupling impedance
Zga(w) . It allows one to predict the self field acting along the beam axis in terms of

signal.
& W=+

- — o wt
2IR[E + PC AB]// (’tie) = - Z//(w) 5//('“"/9)°j dw (40)

W:-o

2;7 is expressed in ohm.

If Zzyuu) were a constant independent of frequency, then, the self-field would be
proportional to the signal. This explains the close connection that has been made between
signal and self field up to now. We will avoid undertaking a detailed justification of
equation (40) since it has been done in the basic lecture given last year already. We will
limit ourselves to a qualitative discussion of the solution of Maxwell's equation applied
to the crude model of a round beam of radius a travelling on axis in a circular pipe of
radius b (Fig. 5).

2 A
A2 A S
. (_S_WU'-,O) wall

Lo o e

Q K ”; C Rv(g’g) B
, AN D oF
Y
X o E,(t9) ) -Ro

b b [ s,,%\:p) ) >4z

Fig. 5 Boundary conditions for an on-axis beam in a perfectly-conducting
circular pipe

At time t and angular position @ in the machine, the local beam current is given
by the signal 54(k)0) .

Let us assume that the beam is completely screened by the pipe wall. Then, there is
no electromagnetic field outside the chamber. When applied to a 2T path enclosing the
chamber cross section, Ampere's theorem leads to

§ ﬁ’]{ = Loalt e (41)

where ]:kdgl(kve) is the total current through the path plane. Since we already have the
beam current S”(t)e) flowing downstream, it has to be exactly balanced by a return cur-
rent or image current flowingupstream in the wall thickness.

S (k8 ==, (k,0) (42)
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For perfectly conducting walls, the electric field in the wall Ewthat has to be
associated with the image current Sw is null. Well below the pipe cut-off frequency,
that stands in the GHz region

- C
(Dwk‘e“ =T (43)

one can apply Faraday's law in the longitudinal cross section of the pipe, along a contour
like ABCD (Fig. 5).

e I d .3 - >
E M =-21|B & . (44)
The result is the standard longitudinal space charge field set up by the direct current
S, (k,0) .
y \ 4

In terms of wall current, this space charge field can be written

2w R E// (k,e):_-;ej_ .‘)_ Sw(k,e) (45)
s.c. 2']5

yiw, ot

Zo 377 ohm is the space free impedance
q=4+2 Lu(%)

Therefore, the space charge impedance is a negative inductance,

SR SS S (46)
S.C. zr,xtwo

Large for low-l?s particles, it vanishes at ultrarelativistic energies. In the form of
equation (40), in terms of signal, it can be written

w40

wt
1w R E//s,c.(k'e):' Z&Lﬁ%‘%«; 5,,(«»,0)&1 do . (47)

W -0

For resistive walls, the electric field in the wall Ew is different from zero. Due
to the skin effect impedance an additional electric field appears on beam axis.

Wz +e0
wk
Iwn R E’/awu'e) =- Z,/R“(/w) S//lw,é) ej dw . (48)

The resistive wall impedance is given by

* 4 »
w) = Z° S v 8 = _z.L
Z (w= (“1)_5_5& o (2} (49)

4 Rw. (VR ° /‘o Wo
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~
where 3 o 1is the skin depth at revolution frequency.
p = resistivity ~ A. 1A m for stainless steel, P : 4".10';.

In these two examples of fields the environment enters via its geometry (boundary
conditions imposed at distance b ) and via its electromagnetic properties (resistivity
in 80 for instance). Obviously different machines have different wall geometries and
different wall electromagnetic properties. Accordingly, the impedance varies from one ma-
chine to another.

Since the impedance is a key parameter that rules instability threshold current, many
attempts have been made to measure, to understand and to minimize machine impedances.

The quantity of interest is not the longitudinal impedance itself but the impedance
divided by the frequency <Z,(w)_/w or even better, Z//(H/P the impedance divided
by the harmonic number of the revolution frequency w = pw, . In a diagram with

21,(P)//P along the vertical axis and @ running from -« to +% along the horizontal
7 . . .

axis, a pure inductance J4Lw is associated with a constant Im(z/y(l’)/f’)= Lw, , a

pure resistance R is represented by an hyperbola Re (Z//(r)/r): R“’o/w .

The main components of the impedance that can be found in a standard circular machine
are listed hereunder and sketched in Fig. 6.

&

/Lwlhhm. MN.YK.
Ued

Fig. 6 Qualitative description of longitudinal impedance
for various components (full line = real part,
dotted line = imaginary part)

a) Resistive wall component

It is peaked at low frequency.

*
_Z_Lm - (4,{,})5& 80 j‘_ (thick wall assumption) (50)
P bW

We will see that longitudinal modes have no spectral amplitude at low frequencies. As a
consequence, it acts very weakly on longitudinal motion and can be disregarded.

b) Narrow band resonators

One of them, at W, = kco° , is the necessary RF system that keeps the beam
bunched. One can also find parasitic high Q resonators due to higher order modes in RF
cavities for instance.

¢) Broad band component (BB)

The averaged effect of numerous changes in vacuum chamber cross section (step
changes, bellows, tanks, electrodes, etc) can be approximated by a low Q ~ 4 resonator
with the resonance w, at pipe cut-off frequency (43).
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The origin of the mechanism is the electromagnetic field created by the beam itself

Z

Rs (51)

e R

R is the shunt impedance in ohm
Q+4the quality factor.

It acts like a pure inductance at low frequencies,

ZMpe 45, o

P Wr

like a pure resistance at resonance,

z//bb - R, @ (53)
P ©r

It acts like a capacitance at high frequencies,

Z, 8.
P

wh

,}R . (54)

This broad band model is in quite good agreement with experimental results. For those ma-
chines carefully designed to lower the BB impedance, the peak value of IZLV(PL/P , can be
as low as a fraction of an ohm. Itcan reach 504l when no care at all is taken.

d) Space charge component

Z//sc

(55)

11’[5\6

It can be very large for low - particles.

~n AS KL for /5:.3 (50 MeV protons)
~ 7 £l for (7 GeV protons).

The actual impedance seen by the beam is the sum of the components listed above.

2.5 Effect of the stationary distribution

In the first part of this section, we are still assuming a single bunch in the machi-
ne.

The effect of the electromagnetic field induced by the stationary distribution 10 is
included in the single particle differential equation of motion

E - e [E + ";: A E) (k,G:uJoUc-l)) (56)

LX) Z
© ”
Py

O =w,(k-T) when following the particle.
The right hand side of equation (56) can be developped by using equations (40), (21),
(23), (6) successively.

vl co;: >

ylands
wo VR.F."‘ w "Ps P ¢ 7

Z,(p) o (p)

V]
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In the following, we will be concerned with small amplitudes. Therefore we can expand
the exponential in series:

dhwit s AL 7 oo A spec. B2, T
T +(.05°t - wov” hm"‘)s F //(P) o“’)& %?m" ) + } (58)

Let us analyze equation (58). In the absence of self-field, a linear motion has been
assumed. The external RF voltage varies linearly with time during the bunch p%§sing and
all particles oscillate at the same frequency u)so whatever their amplitude T is.

The stationary self field introduces :

- a zero order term that changes the synchronous phase,

-a first order term responsible of the incoherent frequency shift,

- non-linear terms which make the frequency shift amplitude dependent. Some syn-
chrotron frequency spread appears.

2.5.1 Synchronous phase shift "higher-mode loss"

The constant term in equation (58) moves the stable fixed point

AP, = hw, Az = el ) Re(z,,m) % (p) . (59)
Vep v, P

Because of the power dissipated in the wall by the return current the beam loses
energy. The synchronous phase is displaced so that this loss can be restored by the RF
system.

Equation (59) can be used to probe the resistive part of the impedance.

We will see later on that this effect tends to lower the synchrotron frequency and
contributes to bunch lengthening.

2.5.2 Incoherent frequency shift - Potential well distortion

When gathering first order terms of equation (58), we get

Z 2 ]:
W, = W, (A4- 32"+ Z : . (60)
A R P BT

P S (P) is an odd function with respect to p, therefore resistance does not modify
the synchrotron frequency.

When the bunch is long enough, 2T/, <K 03cuk.ot% , the major part of the sta-
tionary spectrum stands in the low frequency region where space-charge impedance and broad-
band impedance are constant. Under these assumptions, equation (60) can be rewritten

©so ) vas"‘"”‘fs P

A - @5 -ws, . anI [ Z,,(r)] 2 Pz";(f’) . (61)
se. P

8.8.

For the bunch with parabolic amplitude (25) with the help of

s

Z J(Fx):%

P:-ﬂo 2



- 278 -

we get
2 2.
Asazs .  _ME__ T M, (62)
wso b VRF“ czbtfs P VRF
. The reverse ap-

c6s q@ >0 the synchrotron frequency is reduced by space
Z)p/p <O
or any stationary distri-

Below the transition energy
charge 42,,(7)/,,)0 and increased by the B B inductance
plies above transition. The same qualitative remarks are valid

bution.
The change in RF slope corresponds to an effective voltage V; given by
2
Vr - ws . (63)
\Gc OJ&
If we consider a parabolic line density bunch (26) interacting with a constant
(64)

31wy,

:é+w:ot:z 312//\”‘6 ‘
i \/‘FhwﬂfSB

I (Z/ (")/l’) , then, without any approximation, equation (56) can be reduced to

In this particular case, the focusing force is purely linear. The corresponding

incoherent frequency shift is given by
2 2
A . We - w5° - 5]: Z//(P)
z T = T 4 (65)
wi T Ve h g, 6 P

which is about two times less than (62).
7 the potential-well distortion corresponding to a long bunch interacting

In Fig.
with a B.B.above transition is sketched.

‘r“*”j’ﬁ‘ti%‘ Lishibukio

4 (2]

lndmund[ R.F. V°¥h“3‘ V
P w r
z
Ay PN YR W )
b j i
VT = .(,Hcck\n R _F‘_,-/ =l R ' !:.ﬁ\
RL T T P
3 2 \/ Nk
3 I...(’?")

Fig. 7 Distortion of the RF wave form (left) due to the interaction
with an inductive broad-band resonance (right)
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2.5.3 Bunch lengthening
A direct consequence of the shifts of the synchronous phase and of the incoherent
frequency is that the bunch length and momentum spread depend on intensity.

For electrons, the equilibrium momentum spread is imposed by radiation. Then,

%

B _ Wi [ _wot¥s (66)
B Wy o5 (P +A9s)

o

in which, E3° is the bunching factor for zero intensity.

It is a transcendental equation since B appears in @Jg and in Aq% .

The synchronous phase shift lowers the incoherent synchrotron frequency. Above tran-
sition, with long bunches JIT/z, K Weuk-off the inductance of the broad-band impedance
has the same effect (with very short bunches, the stationary spectrum reaches the B B capa-
citance and this last contribution can be reversed).

In most cases the synchronous phase shift can be neglected. This allows us to rewrite

equation (66) in the following form
3

8 :(5 + A, (67)
Bo 50

in which A° =((“J;'“)S:)/“’;o), is the normalized deviation of frequencies squared one would
obtain with B =B, (nominal current associated with zero current bunch length).

For protons, we assume that the emittance is invariant. Therefore,

* e
B - Ws w5 Ps (68)

B W | b (gs+9s)

°

holds.

2
When comparing the electron and the proton case, (b /Bo) replaces E)/B,, .
Therefore the bunch is less affected by the self field of the stationary distribution.

If one neglects the synchronous phase shift again, equation (68) can be written

-1
B ) [bB + Ao . (69)

For Zso the same definition as in equation (67) has to be used.

Since the emittance is constant for protons, the momentum spread has to be readjusted.

In Fig. 8, the solutions of equations (67) and (69) are drawn.
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Fig. 8 Bunch lengthening as a function of current

2.5.4 Multibunch case

Now, we assume that the machine is operated in a multibunch mode. There are P1 identi-
cal bunches equally spaced corresponding to a total current MI . The spectrum is a line
spectrum again, with the same form factor as the single bunch one. The spacing between
lines is the bunch repetition frequency M, , that is to say M times larger than it
was. On the other hand the spectrum amplitude is multiplied by'P1.

Equations (59) and (60) become

Ay, -_2vI M 2, R, (Z,(rp) «Utp) (59)"
Ps Vee b 1, ; ( F) 3

W Wl A_ﬂ_:_[__l"\z Z (np) Mp o (dp) | . (60)"
s T W, e, 4 Z,\np) Mp o (rp)

If the attenuation of the wake field between two successive bunches is weak, in other
words, if the environment can memorize the passing of a bunch for a time larger than the
bunch repetition period (abrupt change of the impedance within a frequency interval of the
order of the repetition frequency), then, the results for the multibunch case (59)* and
(60)* can be very different from the single bunch case (59) and (60).

On the other hand, if the interaction is a local one (delta function wake) such as
space charge or inductive wall (constant ;;7(P)//P ), bunches ignore each other, then,
multibunch and single bunch cases lead to the same result. This is exactly the case for
equations (61), (62) and (65).

This ends up our study of the electromagnetic field induced by the stationary distri-
bution. For a given current, we have defined a new set of matched conditions that takes
into account the external RF field and the self field of the stationary distribution. As
long as parameters remain realistic, the stationary bunch is stable. In the rest of this
lecture we will assume that all the above effects (synchronous phase shift, incoherent
frequency shift, modified bunch length and momentum spread) have been taken into account.

Around the new fixed point, the linear equation of motion of the single particle is



- 281 -

o

+(.O;C =0 (70)

and of - The W, Vi h sy, + A¢;)

(71)
AR P

2.6 Effect of the perturbation

Now, as suggested in section 2.3.2we want to add a coherent perturbation that rotates
at frequency @, in phase space and therefore induces some field at F‘”o'*“ac

2.6.1 Vlasov's equation

First we have to introduce the necessary equations to allow the evolution of the
distribution to be followed.

The basic equation that rules the time evolution of the local density distribution is
the collision-free Boltzmann's equation.

El}g: + JLU'(SEPE?) = O (72)
Py

_‘I_ILL; Y lew . (73)
k

oo

-
where a (

It can be developed as follows

—
If one uses a set of canonical conjugate variables like (Z' l) then &hr«r:o and
an equivalent form of equation (70) is

¥ _ 0. 0¥ QW+ XY % . (72
dE Dk dtT 3

In this form, it is called Vlasov's equation. It expresses that phase-space density does
not vary with time when following the motion in canonical variables.

2.6.2 Equation of coherent motion

We consider a distribution that sums up a stationary distribution and a coherent
perturbation AY as described in equation (39).

m w, -mu)
,1 \Y /3 S (75)

Ylpt 4= g0 + X qibre

We aim at finding out W to study the stability via its imaginary part. We rewrite
Vlasov's equation (74) with *@ and t as new variables.

- DA‘E
0= (‘% MY)& P%Afft' e



- 282 -

'DAY/% d‘{’/& and 3AY,$C At/d_t are dropped since they represent second order terms
with spect to the perturbation.

x Am .
/3 e’ﬁ“’o E (wc'“\")&) 3'4(%) c,a \}' - _%_?“o :ALE_ (77)

o

\: +l’} will be used to make the writing easier.

In the right-hand side of the linearized Vlasov's equation (77), we have to express

the product % J_L
20 &

A

The stationary distribution comes in via its derivative with respect to T . As
pointed out before in section 2.3.1,distributions like the water bag distribution (28) with
infinite 'Dg /“Dz, must be avoided.

A . 3 3 .
The expression of dz /J,t can be drawn from a single particle equation of motion.

ST S I [

Y
L |2
éE:l_(C +.t;) :-_Fi M«if (79)
de ws ws

E; is the coherent electromagnetic '"force". Let us recall that the stationary distri-
bution effect has been already taken into account (70) and (71).

By means of equations (40), (31), (32) and (71)) Fc can be written :

goet

T
il wy e > Z( P)° pee Z:tr _ (80)
(Oov-,- h ws(Qo+dyg) P

It is interesting to notice that E does not depend on € , therefore T and z are
canonical congugate variables.
4pwoT

Now, we expand the product buv\*/ > in series

Am*/ ’H’wz_ _ Z /} '3"Y «.T,,(F“’o%) . (81)

?“’0
Equation (12) and

h+A h-4

J (=) +J (x) = 2'_: J._ (%) (82)

have been used.
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Finally we get

A w k - r-*
33_11.4_‘ - am L ws el PET Z_Z_/Af) ht:3 v J 02)20‘ . (83)
dt dt w: VT h w0s( |, +a¢;) ‘;gtf Pt P 3 "(Fw i «&(f)

We gather both sides of equation (77) and notice that it splits into an infinite number
of equations, one for each w. . As a matter of fact, on an average, the component %n\. of
the perturbation is driven by the term b=m. essentially.

The final form of the equation of coherent motion of a single bunch is

; - A - wlmnw 9o Z0) J(wed) ¢
1((.061&(4)5) 1 ¢ a"‘ - w:Vrkwb(‘:s"‘A‘Vs) Y2 § f' m“)w") (f) (84)

O’(F) is the resultant spectrum amplitude at frequency ruJo+ w, .

T(p) = E: T (p) . (85)

2.6.3 Coherent modes of oscillation

A
Because there are two degrees of freedom (\Po ’L) , the general solution of equation
(84) is a twofold infinity of coherent modes of oscillation. We will use the subscripts
m and q (-0 ¢ m,quo) to label these modes.

Each of them is characterized by

- a coherent frequency wcm . Its imaginary part will tell us whether
this mode is stable or unstable 1

- a particular perturbation AY . That is to say a twofold infinity of
functions Fm (2) the sum of which gives the detailed density pattern that rotates in
phase space at frequency W, .

- a spectrum & (p) which is obviously peaked in the frequency region
where this mode is driven by the impedance. At low intensity the self force responsible
for the frequency shift is small when compared to the external force responsible for the
synchrotron frequency. The coherent frequencies of the infinity of modes with the same m
value cluster near the unperturbed frequency muwy . Therefore it is logical to study each
family m separately and to ignore the coupling between different m .

When equation (84) is restricted to a single value of m ,

i _m o - L muwg RED Z,0) J(wt) ¢ (86)
'}((ﬂom‘ mws)'j T 1»\1 0 V'r h ws( g+ AY,) Y3 Zr: P m(l’“’o) m1(r) 86

there are several methods to get the solution.
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Fig. 9 Schematic representation of coherent-
mode frequencies versus current

2.6.4 Sacherer's approach

The functions % are solutions of Sacherer's integral equation.
™

(g e) o)+ 42 | 62,20 guqi) €42

Z O

. (87)
o
The definition of @7, (32) has been used.
6;$€;ivis the synthetic kernel.
G (2 'ﬁ') = _anT mws > ,3 Z,0) J(P“’ %)J(Pwo'i') ) (88)
mt: ) 2 m o m
“ V@"‘“*ﬁ*A%) P P

In search of solutions

Inq

, let us study the properties of these functions.
We define an adjoint function

that satisfies

(6 oma) g5y + | G8,8) qut) ¥4

. (90)
o

Then we define the scalar product of two solutions %nt

. and 3~1 as follows
)

) Jug > = <GPt 2= | G o E 4

(91)

(89)
!
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and we use equations (10) and (12) to express it:

(an\1 -Mw5)< %M[ ) %Mt‘ > = (w(,m{ - Mu’,s) < %Nﬂ ) 3MQ >

92)

A

A (
= G (&%) a6 prenl - _wlmws  F(Z0)q o)
2 M( ,L) 3““ K CA“‘\( )€ wozvf)‘ C""Ws’*A“PS) P J e ) *\(f) N?&) ’

We can conclude that :

- If #.X , the scalar product has to be null. Therefore, the solutions
gm are orthogonal according to equation (91). This is the only information we have in

order to get the solutions. A priori, these solutions which depend on ¢, via @% %psg are
not necessarily expressible in terms of functions that exist in the stahdard library of
functions.

- If the Im were known exactly, then, with 1:Q in equation (92) one
could get the coherent frequencies W . g .

1

Z,(®) o
Z 4 20 g

W zwmo|d o4 — oL _ : (93)
™ @, VT h“”H)s"A‘PS) j'ﬂJ_ 2 dz

— Furthermore, for a local interaction like space charge or inductive

walls (constant Z,(p)/p ) Z:y(P)//P can be removed out of the summation over p va-
lues. The kernel is a Dirac function and the spectra I, are self orthogonal.

This last property allowed F. §acherer to find out a simple exact solution with
Jacobi and Legendre polynomials ?"LJs) and P . It is valid for a constant Zgy(ﬂ/1>
and corresponds to the bunch with parabolic line density (26).

W = mw A aw L ZWp) ¢ (94)
o I w:VT\-\ws(q?s»rAtf,)(g ?) "
1
0 z
3‘“‘(%) = eﬂ Pm(% cme) de (95)
(¢}
Axmu): "Pm(%) . (96)

2.6.5 G. Besnier expansion in orthogonal polynomials

We assume there exists a complete set of normalized functions ~{Mﬁ£) which fulfil
the orthogonality relation (90).

o Mg oo

< fﬁ) ,)év(a)> =1 : (97)

pra-ayv
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We expand the solutions 3"“:\(%) and the kernel G’ (‘6, ﬁl) in terms of the g 's.

%m‘(i):z a, f(t) (98)

h\

G ®7)- ZM {u){( , (99)

Applying the orthogonality condition (97) several times we get an infinite system of linear
equations.

b3
(u) ‘”'“*’s) a + § MAW a,=-o (100)

CM(‘

M

P4 is the interaction matrix.
MV

(L9 m

Mo _mImws (o) 2 Zlp
M7 w0l Y, hanlg 44 ) P G'“Iu(") A [ P ) e
with G'Ml“(ﬂ = 1'“ ,J;(Pwo%) »fu(i) tdz .

-]

Numerical solutions of the truncated equation (100) yield eigenvalues W g — MW
and the eigenvectors aL which allow to express (equation 98). “m

e LY
For the bunch with parabolic line density orthogonal functions with the required
weight-function and a range which extends from © to T, /2 can be obtained from the Jacobi

polynomials. Laguerre polynomials can be used for a gaussian bunch.

2.6.6 J.L. Laclare's eigenvalue problem

A
We simply multiply both sides of equation (86) by J (Qw ‘L) and integrate over T

values to get

c

(‘*’mﬂ""‘“’S) rmq(é?) = Zi’; er -mq(F) (102)

I/\: -_ an L muwy (42400) 21: J;(Fwoi) J(lwﬁ) e . (103)
F@lVohoan(geag) J, 02 "

0

For q running from -« to 4e ,

LY
W, -Nluk is the q eigenvalue
(P) the q“‘ eigenvector
of the infinite matrix K the elements of which are defined by equation (103) (one

column and one row per frequegcy line). For numerical reasons, the matrix needs be trunca-
ted. It explores a finite frequency domain (smooth impedances over a large frequency range,
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small details over a reduced frequency range). For a given problem its dimension have to
be larger when compared to those of Besnier's matrix. On the other hand each coefficient
is easier and faster to compute. As a matter of fact Besnier's coefficients are given by
slowly converging series.

?.6.7 J. Wang and C. Pellegrini approach

This last method is based essentially on the same analysis as other's but the authors
do not define the mode number M. in their perturbation.

It has been developed to explain fast blow up of the beam in a time interval that
could be less than the synchrotron period.

2.7 Low intensity coherent modes of oscillation

We are assuming a low intensity bunched beam which interacts with the different com-
ponents of a standard circular impedance 2.4. The modes of oscillation are solutions of
equation (102).

2.7.1 Local interaction space charge or inductive walls

Because /3 z’_d.f) is constant and real,
F

,lﬁﬁ)_:éﬁ__[_wb W L We (104)
p 2p%*

the matrix is real and symmetrical. The eigenvectors ¢ are orthogonal, the eigenvalues
CWemag — M W are real. There is no instability. Once started, a pure eigenmode rotates
indefinitely at coherent frequency in phase space.

Figure 10 illustrates the results for the bunch with parabolic amplitude (25).

The coherent frequency shifts can be written

Aw - w - e, - 4T e ws C. Z) (105)
o * o™ ™ T ey T

The largest Cmc‘ values are listed in Fig. 10 in a decreasing order for the lowest
values of m . Given m', the largest C,.,“1 takes the subscript C‘:'m , the next one ﬁ:nul,
...,c‘:m+Z ) 1ee OgRLO -

The spectrum of mode m{q is peaked at w Ay (‘]“"‘)W/"C., and extends * 2UW/7, vad/sec .

Often, only the most coherent modes, with g=m are referred to m=4 and =4
dipole am=2 and = 4 quadrupole w=3 and =3 sextupole etc... It should be
noted that two modes with same are peaked at the same frequency (same line density).

They alsc have roughly the same Cwm and accordingly the same sensitivity in the same
frequency range. Nevertheless they correspcnd to entirely different density patterns in

phase space (compare 3“ , 54.5 and 3” , st for instance).

Provided the bunch is long enough and the ¢ value is not too large so that the main
part of the mode spectrum stands well below the cutoff frequency, equation (105) gives a
good approximation of space charge and broad band inductance effects.

In order to understand the physical meaning of the coherent frequency shift let us
take the dipole moce m=q= A and let us compare the coherent frequency We 44 with the
zero intensity incoherent frequency ws, .

The quantity “JcM' We is obtained

wa-coso = wu‘- ws + ws'“’sg = Ach_M.;.AuJL

by adding the coherent (105) and the incoherent (62) shifts.

0 -w, = LT wg (1%&1)(%-&) _ (106)

(27} So P bs VT h m(‘Ps"Nfs) ™
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Therefore, as far as frequencies are concerned, coherent and incoherent effects
The frequency of the dipole mode is pushed back towards wg_ . We would obtain

subtract.
exactly if a bunch with parabolic line density were assumed.

ww = wSo
Depending on the stationary distribution, the dipole mode corresponds more or less to

an off-centered rigid motion of the bunch in phase space. For a pure rigid motion (Fig.
11), the potential well deformation (change of focusing) induced by the stationary distri-

is a pure quadrupole attached to the bunch center of mass position. Therefore, the

bution
bunch center of mass does not see any electric field change. It keeps oscillating in the

external RF guide field and oscillates at frequency g, -

AN W otw
',,.nz\ KA u S0
I'. .\_
‘ ~ ¢
I’ Y R
U, &t
~~~~~ - ws

Rigid dipole motion in phase
space and induced potential
inside the bunch

Fig. 11

get smaller and smaller with increasing

The coherent frequency shifts Zlu%ﬂn
111 tendancy is to push back the coherent fre-

values of m and q . Nevertheless the over
quency towards wws_(see Fig. 9).

'2.7.2 Parastitic high Q resonators - Coupled bunch modes

Let us imagine a very narrow band object, so narrow that the coherent motion is
. Going back to the matrix equation (102), (103)

driven by a single line at pwg, + W
valid at low intensity for a single value of . , we can write
™
(

((;.‘)Cm—mu.)s)d’md): er O'M(F>

The sum over r has disappeared. A single coherent mode of w. type is solution of

equation (107).

- coherent frequency
2

LY
n I Z,,(P) Mo J(

4 " Fu%%)dé
r ot

w = mw ./‘ -
cm S @IV, h cos(q,+ O 1

107)

(108)



- 290 -

- spectrum
o’m(la) =4 (109)
e T (k) J, (pad) e
AT
O’M(l): o " (110)
‘.a.%’ Jm(rw,i) dz

o

- perturbation (see equation (39))

T am(i) d %i"‘_’ Jm( pw,t) . (111)
14

Let us examine the stability of such a system

[J
T (w)ec 2™ R(Z20) [ T pet)it .
w (we) VAP, A : ) 55w (19%) (112)

o

A resistance is needed in order to get an imaginary frequency shift.

A
A priori, %f is a monotonic decreasing function null at bunch edge T=7T /3 .
Therefore the integral in (112) is negstive.

On the other hand, \/-r ws (Y, + 8Y;) is negative above transition and Re(zf(?)/f)
is positive at positive frequencies.

The conclusion is the following. Above transition, upper (lower) synchrotron side-
bands as seen by a spectrum analyser have a destabilizing (stabilizing) effect, with the
opposite below transition.

This result can be qualitatively explained by means of Fig. 12.

2{
5

in odwamer [ domping \\ M:

head / gl

Fig. 12 Qualitative description of the
synchrotron motion in phase-space
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Above transition ( m > O ), a positive Jf/r is associated with a positive %. and
a lower revolution frequency. Therefore, the upper part of the phase-space diagram coincides
with contribution to the lower sidebands of the spectrum.

If we assume a rigid dipole mode oscillation, when the bunch center of mass is at
noon in phase space, it loses energy by interacting with the resistance at lower sideband
frequencies. It spirals towerds the synchronous particle, the coherent amplitude is dam-
ped.

On the other hand, the resistance associated with upper sidebands will have a desta-
bilizing effect in the lower part of phase space diagram.

Up to now, a single bunch has been assumed and by means of a coherent perturbation
AW (see equation (39)), particles within this bunch have been arranged in order to
produce a coherent signal at ruoo +wg .

If M equidistant bunches are present in the ring, one can go further and coherently
arrange particles within successive bunches to obtain a coupled bunch coherent motion.

With the index m running from o to M-4 , coupled bunch mode number m will corres-
pond to a phase shift of W AWM/ between the coherent perturbations of two successive
bunches. \

L
The Fourier component of the signal is M times larger but only every M 1line
occurs.

With the above convention, the spectrum of coupled bunch mode is at frequencies
mn:(m”:l"\)wo +mwg (113)

The equations of coherent coupled bunch motion are essentially the same as the equa-
tions of coherent single bunch motion (84), (86), (102), (103) except that,]; current in
one bunch becomes MI current in M bunches.

Indeed, the summation over the spectrum is restricted to the coupled bunch mode
spectrum.

B remains the bunching factor of the single bunch (24).

An example is given in Fig. 13. We are considering M= 4 bunches performing a
coherent coupled bunch dipole mode. The four possibilities of coupling the bunches in
rhase space are shown in the upper part of the figure. In the lower part, the line spectrum
is drawn as seen by a spectrum analyser.

The spacing between upper (destabilizing above transition) and lower (stabilizing)
sidebands is minimum (Aw = 2»(-0(,) for coupled bunch mode w=o and W= M/ |, It is
maximum (Aw= %“’o* zw,_) for n=-M and m= 39 |

As a consequence, modes n:hd/% and < 3”/@ are 3;ry sensitive to narrow band
resonators. When mode m is damped (antidamped) the complementary mode M-m is antidam-
ped (damped). The maximum frequency shift is obtained when the resonator frequency coinci-
des with one of the frequency lines in the coupled bunch mode signal W, =W, .

Provided the spacing between two adjacent lines of the spectrum is larger than the

resonator bandwidth 9w ,
Sw = W /iQ (114)

a single line drives the mode. Equation (108) applies. It can be adapted to the bunch with
parabolic amplitude (25).

Wemmuy _ b ML Rs q F. (\au’g‘.)‘ D (115)
mwg T (M) TEBY V) h con (g5 +2Y,) Wp "t e
X 2
F (x) - 2 (Im] +4 J—(.«»)ucluv (116)
m - X m
o

RS is the shunt impedance (see equation (51) for instance).
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Fig. 13 Coherent coupled-bunch modes of four bunches
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The form factor F;L is plotted in Fig. 1l4.

For large bandwidths (broad band impedance for instance), more than one line must be
included in the frequency shift calculation. Cancellation occurs between upper and lower
sidebands. The frequency shift is reduced by the factor D shown in Fig. 15.

:D ot x (117)
- ik «
The quantity
We a4 (118)
2Q w, M

«£ =z

is the attenuation of the wake between successive bunches. There is no instability for
wakefields that decay appreciably before the next bunch arrives.
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Fig. 14 Form factors Fy for different modes m of longi-
tudinal bunch oscillation
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Fig. 15 Attenuation factor for the frequency shift in
the case of a resonator impedance
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Coupled bunch coherent instability is very harmful and difficult to fight.

Non-linearities can Landau damp the mechanism. When assuming some spread in incohe-
rent synshrotron frequency, the threshold current is defined by

Ao, & \-/:"-”- Awarm‘l . (119)
4

In the above expression, [SODA &uul, is the full spread in W between center and edge of
the bunch due to non-linear sygchrotron forces.

A spread in incoherent frequencies of individual bunches can also help in decoupling.
This spread can be provided by a low frequency RF system. It can come from a spread in
bunch population as well, in which case the required r.m.s spread is given by

ST I,.(8w)
(2= —m\T el (120)
I >h,m.3 > Re(ch)

Indeed, one can imagine a feed back system to damp this type of instability. Never-
theless, the number of coupled bunch modes and consequently the number of bunches has to
be limited in order to keep the feed back system bandwidth down.

2.7.3 RF cavity - Robinson's effect

For a single bunch or two bunches, upper and lower sidebands belong to the same cou-
ple bunch mode and therefore tend to cancel unless the impedance is very narrow band as in
an RF cavity.

The RF is tuned to «dge very close to htﬂg. Given m. , the imaginary part of the fre-
quency shift can be obtained by adding the effect of the upper and lower coherent side-
bands (at hto°+-n1u05 and hnoo-rnJuS when the real part of the frequency shift is
neglected R, (w, - mw,)<«uy).

Let Ruu) be the resistance at frequency @ , we apply equation (108) and find

Im ST a2
Im(u),_) =- Q);crl\’“ m“‘("\;s‘m‘fs) [R(hw;mws)-R(lwo—mw_‘)] 3% J';(hw't,) dz . (121)

o

It is important to notice that the result is different from zero essentially because
Re, (Z//(P)/P) is evaluated at hwo""""“’s while RQ(Z,/(-P)/_r) is evaluated at hu)‘,-n-rtqls .

Trouble is avoided in this case by tuning the cavity to overlap the stable sideband
according to Robinson's criterion.

2.7.4 Resistive wall impedance

The resistive wall impedance is peaked at low frequencies were the spectral amplitude
of longitudinal modes is very weak. In most cases this effect can be disregarded.

2.7.5 Conclusions about coherent instabilities at low intensity

The theory that has been developed here above is in perfect agreement with observa-
tions.

The frequency shift formula looks reliable. It has been tested on several low order
modes with space charge dominated beams as well as ultrarelativistic beams in inductive
walls. Nowadays, it is often used to measure the reactive part of the impedance at low
frequencies.

The predicted bunch shape oscillations (up to sextupole mode) are observable in many
machines. In Fig. 16 top, photographs of a dipole mode (left) and of a quadrupole mode
(right) are presented.

Coupled bunch modes are frequently observed in machines operated in multibunch mode.
In TFig. 16 bottom, one can observe coupled bunch mode n=A4 with three bunches in
SATURKNE (Saclay).

Lastly, the theory gives a good picture of Robinson's instability.
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Fig. 16 Experimental observation of bunch oscillations (top) and coupled-bunch mode
(bottom) in SATURNE (Saclay)
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2.8 Single-bunch instability at high intensity

As stated before, the original theory of F. Sacherer can quite well explain low inten-
sity phenomena that have been observed with bunched beams in a circular machine.

However, in this form, this theory cannot explain other types of single bunch insta-
bilities that have been found.

For instance the '"microwave instability", the signature of which is a high freguency
signal, shows up in most machines (long proton bunches and short electron bunches), above
some threshold current. Boussard's criterion derived from the Keil-Schnell coasting beam
stability requirement by using local values of current and momentum spread can predict
this threshold quite accurately.

In addition, with increasing current. the rate of bunch lengthening due to potential
well effect changes suddenly abcve a threshold current. This '"anomalous' bunch lengthening
often called '"turbulent" bunch lengthening is accompanied by a bunch widening (increase of
momentum spread) .

An attempt to explain some of the above effects with theory consists of introducing
"mode coupling'".

2.8.1 Analysis of the instability mechanism

In order to explain the way mode coupling acts, let us go back to the low intensity
regime and consider a single perturbation again, the dipole mode for example.

As represented in Fig. 10, once the stationary signal has been subtracted, the
single pass signal of the perturbation is an odd function of time. As a consequence, the
perturbation spectrum is an odd function of frequency.

When considering a local interaction (2.7.1) the force is exactly the derivative of
the signal (signal as seen through a pure inductance). Therefore, the force is an even
function of time. It can efficiently drive the perturbation and it leads to a frequency
shift proportional to the impedance, according to equation (105).

The same result would apply with a capacitance as well. The force would be the inte-
gral of the signal, that is to say an even function of time again and it would drive effi-
ciertly the perturbation.

On the other hand, with a pure resistance the force is exactly the signal. This time
it has the wrong parity to drive the perturbation (weak differential effect).

Conclusion : an odd perturbation is essentially driven by an even force. Indeed, an
even perturbation is essentially driven by an odd force.

Now, let us add two adjacent perturbations, ar odd one (dipole m=A) and an even one
(quadrupole m =2 ) interacting with a general impedance (inductance or capacitance plus
resistance).

Each perturbation will interact with the forces that have the right parity to drive
them, namely, the reactive part of its self field plus the resistive part of the adjacent
perturbation field.

Conclusion : two adjacent perturbations cannot couple via a pure reactance. A resis-
tance is necessary.

Let us notice that resistance contributes an imaginary frequency shift and may cause
instability.
2.8.2 Matrix equation of single-bunch modes at high intensity

The starting p01nt is equation (84). Both sides can be multiplied by Cr ( i)
and integrated over £ values.

(w(,- mu)S) d:n(e) = 'ZWI"\‘L’S ZI}Z//(P) 'DJ. J rw C)J (X“\’ ‘(,) J‘L G‘(P) (122)
co:Vrk o({, +Aq) P

Then, using the definition (85), one can sum up over m values and express the
spectral amplitude at )wo + we
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o‘(i);__L_ Z,l__//_(_) Do mws | I(Pw%)J- sz) Lt ofp) . (123)

Vhoslgt) F w3 T

Let us introduce a matrix element P11

L) = LT :Z: ”, P1
7 w‘BSVThm(._?S,,A.&) P /J P Cr(P) . (124)

When the bunch has a stationary distribution with parabolic amplitude (25), P1e ta-
kes the following form

A

er -1B Z Jm(‘mbx) J;(/!wﬁx) x dx . (125)

m wf- L
Wy 0
Let us examine the method that can be used to solve the above matrix equation (124).

Assume a real coherent frequency o, measured in incoherent frequency unit,
We /Zos .
Look for the eigenvalues of the matrix

1 Z,(#) M{ (126)
P P

where [ 2%(rh/ ] is the diagonal matrix associated with the impedance.

Scale the intensity parameter

e 4T
T T wE BV h ws(q,+0p)

(127)

in order to adjust the eigenvalue to unity.

Assume that the bunch is long enough and use the low frequency imaginary part of
the impedance to calculate V[ /Vge and A:z(w S-wt)/wg. (equation 62).

Finally, by mears of equation (67) or (69) find out the bunch length.

In the following, we apply this method to three special types of impedances, inductive
wall or space-charge, narrow-band resistance, broad-band resonator.

2.8.3 Space-charge and inductive-wall modes at high intensity

As it has been already pointed out in section 2.8.1, odd and even perturbations cannot
couple since there is no resistive component in the assumed impedance. There is a very weak
coupling tetween perturbations with the same parity. This coupling modifies slightly the

ma 'S-
The results are prescnted in Fig. 17.
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Fig. 17 Coherent frequency shift as a function of the
incoherent shift for an inductive impedance

2.8.4 Narrow band resistance

In this section the goal we aim at is to illustrate the resistive coupling. To this
end we assume a narrow-band resistence at coherent frequency ru)°+w‘ .

Zy(p) . 6 except at 4 . and Z//(Pc):_ Z,,(-fe) - ES (128)
175 P==F (i b I

Furthermore, we assume a pair of adjacent perturbations wm and mA for instance.

By using some elementary algebra and the following definitions
4+ 2
AA A m
J&m - Jm (pewst) ® T o , O (-pe) = (1) a,. (pe)
o
the matrix equation (124) can be reduced to

O."l ( P") R Y —-—M XQ Gu(l’c)
= 4Bey s g . (129)
1 Pe (’Mfl) ’& miA s °
Gsa (I’c) %’s—-(mM) LR (Fc)

The eigenvalues are solutions of a quadratic equation

X
(.""_"- m)(ﬁ‘:-(mm)) - _c'e (130)
wy w;
2 2
with C = A6 m(min) R:B _&'&.‘EM. .

Pe
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The instability threshold is obtained for Ewz A/ac This threshold depends
strongly on the value of

Pe The instability is efficiently driven when re is such
that the product Am. /V«,,MA is maximum, that is to say rc w, about
(a2m+3)TTM /2T,

Below threshold, the two coherent frequencies are real. The motion is stable. Above
threshold, the real part of the coherent frequency we is constant and the imaginary

part is positive for one mode (stability) and negative for the other one (instability).
Since one mode is unstable, the bunch is unstable.

Results are summarized in Fig. 18a for m =z A4
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Fig. 18 a)

Coherent frequency shift versus intensity for a narrow-band impedance

b) Threshold intensity as a function of the bunch length

At low intensity, we find two modes. The first one at coherent frequency o,z wg

is essentially composed of a dipole perturbation. The second one at . :zué consists of
a rather pure quadrupole perturbation.

For increasing current, the spacing between the two coherent frequencies gets smaller.
Each of the two modes is a mixing of dipole and quadrupole perturbations.

At threshold, the two modes are identical. They are associated with the same coherent

frequency ),z 3/, W, . Maximum stable coupling is reached.
c 2

For a narrow-band resonator, when including an infinite number of perturbations, the
intensity parameter at threshold & th is given by

2Be R owe - _(z @ik V(>0 e Ay

W nzA (8:)’: (@) \ neo W .

-4
23
r
S

In Fig. 18b the above quantity is represented as a function of w,_ T,

2.8.5 Broad band resonator

Now, we give the results one would obtain with an impedance that consists of a pure
resonator of Broad-Band type (Fig.

20). The resonant frequency «J, (Fig. 19) lies
between the maxima of the spectra of modes 22 and 33 ((JzzAIZU/tL and (USS v 4m/T,) as
obtain with a constant 2:7 (P)//'P (see Fig. 10).

The solution of the matrix equation of coherent motion (124) is a twofold infinity of
modes as shown in Fig. 20. The upper graph gives the coherent frequency wWe of the
modes in Wge unit (vertical axis) as a function of - A (equation (62)) that
measures the normalized shift of incoherent frequency squared (horizontal axis) for a

long bunch W, T, j)A . The lower graph gives the same results with - & Rsu%/ﬁdh along
the horizontal axis (equation (127)).
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Fig. 19 Broad-band resonator impedance and mode
spectra

Below transition '"mode coupling' cannot lead to instability. This is the reason why
we restrict ourselves to working pcints with a positive abscissa (-A > o) . We are
above the transition and because of the low frequency inductance the incoherent frequency
decreases for increasing intensity. At very low intensity (-6a—> o ) , there is no insta-
bility, the coherent frequencies are real, they cluster near the integer values of We /W, -
For increasing intensity, some of the coherent frequencies are pulled up, other are pulled
down. At sufficiently high intensity for two coherent frequencies to merge, instability
appears. In the present example, the lowest threshold occurs at -A;hz‘.SQ . In the inter-
val, ¥ < We g, < 3 when following the solid curve, we can see that the comments already
made in the previous section apply again. At low intensity, we get two modes on the curve.
The first one, at coherent frequency w, ~ 2 Wge 1is essentially composed of quadrupole
perturbation 22 . Its spectrum is shown in Fig. 20a. The second one at w,~ 3wy, ,
consists in a rather pure sextupole perturbation 933 (Fig. 20c). For increasing current,
the spacing between the two coherent frequencies gets smaller and smaller. On one hand,
the coherent frequency of the first mode is pulled up because its spectrum overlaps the
inductive part of the impedance. On the other hand, the coherent frequency of the second
mode is pulled down because its spectrum overlaps the capacitive part of the impedance. Each
of the two modes is a mixing of quadrupole and sextupole perturbation. At threshold
-8 --Ata (Fig. 20b) the two modes are at the same coherent frequency QJCAIA.7 o, -
Maximum stable ccupling is reached.

Obviously, the instability threshold depends on the resonant frequency of the resona-
tor and on its bandwidth.

The example of Fig. 20 is a broad band with a bandwidth .A{ .¢,=A about as wide
as the mode spectra. In other words the wakefield decay in about a bunch length <€, . This
is the worst situation leading to the lowest thresholds.

For very small bandwidths, only a few lines contribute and the threshold is high.

In Fig. 21, with -é-Rsomﬁkalong the horizontal axis, the result corresponding to a
very narrow band resonator at frequency w, T, = #.85 is shown.
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Fig. 22 Coherent-mode frequencies versus intensity for a
wide-band resonator impedance

For very large bandwidths, more and more modes lie under the resonance curve and the
threshold is higher again (see Fig. 22).

Above transition energy, results corresponding to different resonant frequencies and
different bandwidths of the resonator are summarized in Fig. 23.
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Fig. 23 Normalised threshold intensity parameter versus bandwidth
for different resonant harmonic numbers pr = wy/we
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If one defines the pcak current ]: and the full-width half-height momentum spread
as follows,

A
T-2L (132)
LB
v 2
2
JAY) - W T (133)
T "Lz'

then stability requires

%Iaﬁl <07 - 2 L ‘aﬂ’l \<(Qﬁ) (134)
P In(0A) W, { R (1;{/) P P /EwhN.

It is interesting to notice that the lowest threshold is equivalent ( 3/3“ N 0-7)
to the coasting beam threshold for peak current (D. Boussard criterion). Presumably, the
bunch lengthens and widens to remain just below threshold.

2.8.6 Bunch lengthening and widening

For given RF conditions (\&I,/k ,ank&) and given impedance, we plan to define the
dimensions of the bunch required for stability. Let us recall the following notations

2 2 2 3

AW amd A(L*’s__i”_s_) -_(6_) A (135)
wSO wé’o o Be

- Proton case

Let EL be the zero intensity bunch .g factor. Matching fixes the peak momentum
spread and therefore the emittance.
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We start increasing current. Because of the potential well effect, the incoherent synchro-
tron frequency changes (decreases for example). According to equation (69), new matched
conditions can be found, same emittance, smaller momentum spread, longer bunch.

-A 3
—E;—) Z (b + Ao . (69)

.

This remains valid till we stay below the instability threshold A < A

Once the threshold is reached, the emittance of the bunch cannot be kept constant.
The bunch has to lengthen in order to maintain A at threshold. The momentum dimension
has to follow to satisfy matched conditions. The bunch widens out. Equations (136), (137)
and (138) apply.

3
£ A, (136)
B, A,
6
4
E ) (hen,) (2 (17
E'c> leh
6
A S/, )\
_ﬁ - (/1 +AH‘) 4. ) (138)
Al b

- Electron case

Radiation damping determines the mcmentum spread. At zero intensity, matching fixes
&o and consequently the emittance.

We start increasing current. Potential well decreases the focusing, the momentum
spread remains the same, the ktunch lengthens according to equation (67), the emittance
grows. )

(67)

- . (139)

This remains valid till we stay below the instability threshold A < A w .

When the threshold is reached, the bunch starts lenghening differently to remain
stable. The same equations as for protons (136), (137) and (138) are valid.

Figure 24 gives a qualitative description of the evolution of beam parameters below
and at threshold.



- 305 -

Electrons Protomm

s &osp 4 By
@F/r)o (Af/f )o

|
&

| - —— -

—
L
—
-
¥
|
o
~
-
F

a)

o|os

oelos
o

"\

PN N

— — A
"4, 1 °
Bo)y, ol
b)
B 1 B
q B, B,
A /'/ 4 """/
: \
| 1 ’
: |
] - > A
- A °
A 2 1
) (Ao)n.‘ (Ao\\—h

Fig. 24 a) Relative momentum, b) emittance and c) bunch length, versus
normalized frequency shift for electrons and protons




- 306 -

3. TRANSVERSE INSTABILITIES

3.1 Preliminary remarks

To deal with transverse instabilities we will follow exactly the same procedure as
before. Again we will work in the frequency domain with transverse signal, stationary
distribution and perturbation. We will assume a transverse impedance and by meens of
Vlasov's equation we will describe the coherent motion which consists in eigenmodes of
oscillation and coherent frequencies.

Indeed, most of the comments already made in the previous section apply. Therefore,
in order to avoid repetitions we will mainly insist on differences between longitudinal
and transverse cases.

In the longitudinal case, the instability process is initiated by a perturbation of
particle density which creates an electromagnetic field across the beam. Remembering
the example of a circular pipe, this electromagnetic field was associated with a return
or image current S“,flowing upstream in the wall and uniformly distributed around the
beam axis.

In the transverse case, the perturbation consists of a slight transverse displace-
ment of the beam which oscillates frcm side to side in the external focusing guide field.
This time, the wall current S, is not uniformly distributed around the pipe axis. It is
a differential current which flows in opposite directionson either side of the vacuum
chamber. This reguires a longitudinal electric field E” which varies in strength across
the @perture and a transverse dipole magnetic field B, as shown in Fig. 25. This ma-
gnetic field Bz, deflects the beam. It can increase the initial displacement (instabili-
ty) or decrease it (stability).

longitudrnal
elué

b
ric Field sam

P

N
S
o

--%

Ty

Fig. 25 Beam transversely oscillating in a conducting pipe

Indeed, we could have considered higher-order defects induced by an on-axis beam the
transverse dimensions of which charge periodically with time (throbbing-beam modes).

In the present lecture, we will restrict ourselves to the study of the effect of the
dipolar magnetic field. This is the simplest transverse interaction between the beam and
the surroundings.

5.2 Single particle motion

In order to describe the transverse motion of particles in a bunch, one needs four
coordinates. Two of them are related to the projection on the longitudinal phese space. We
will use again

. A
(T , T ) or( ﬁ% , T ) (see section B.1)

z-1 cos (w,t ++o) . (140)
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The second pair of coordinates
. A
(X,X)or (¢4, x)
corresponds to the projection on one of the two transverse phase spaces (horizontal for
instance).

The solution of the equatior of unperturbed motion in the transverse plane, will be
written

x(k) = X s Q) . (141)

A very important point is that the betatron phase advance per unit of time or beta-
tron frequency

Li): Qw (142)

depends cn the instantaneous momentum deviation of the particle in first order. It can be
expanded as follows

9= QO(A-ség)wo(A-niFLLoowo(A-tu-;l.)) L am

(}o and ), are the transverse wavenumber and the revolution frequency evaluated at
synchronous energy.

% z d_g/éf is the machine chromaticity (144)
TP

n :._JUJ/LJ has been defined in section 2.1 already.
According to tke above definitions, the transverse coordinate satisfies

.o

. . 2
X_ix+(f))(:o. (145)

The second order, @ and @ depend on transverse amplitudes snd momentum spread.
In the following, we will neglect this dependence. Furthermore, we will assume that the
motion in longitudinal plan is stable (no coherent effect).

Here again, we will be mainly interested in the electromagnetic field induced by the
beam. Taking this field into account will modify the differential equation of motion (145)
of the single particle.

. (n. .2 — > =

x . L x N LP X =-_° E + Pc/\b (k,@:wo(k-l)) . (146)
; ~y
P L

3.3 Single particle signal

The transverse displacement of a beam can be detected by means of transverse P U
electrodes. These are diagnostic equipments allowing us to measure the local beam center of
mess position. The signal drawn from an electrode is the product of the longitudinal
signal times the transverse position.

Let us assume a perfect P U electrode at angular position © in the ring and let us
observe the transverse signal At(k,é) induced by an off-centered single particle.

By definition we get

A (k,8) = »,(k0) (k) = »,, (£,0) X o5 Ple) - (147)
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In the time domain, AJ_(k, 0) consists of a series of impulses, the amplitude of
which X(t) changes at each passage through the electrode. Integrating equation (143) to
get

Ple)= Q, w, lk-T) 4 WeT + ¢, (148)

with Wy = Q°w°§l_ end Y =(t) at tine A= o (149)

and using equation (9) to express éy(k,ev , one can successively obtain

s (k,0) = eX cob(f(t)ZE 3(,&—6—%,- ile) (150)

Wo

(151)

A lk,0) = ews x (JY 44 ) 5 eﬂ(u‘,(t-c)_e)
am k) ;

when using equations (10) and (12)
and finally

'3(0.)"‘& 4.“1/‘-"0)

Qu.t + @) om A
HEE 0 im T (pradeagy)d s

/Sl(k,O): € Wo f(o
4 m,p

with Wpm = P Wo + MW - (14)

With the Fourier transform we can pass on to frequency domain .

A ) m A L O 9)
bJ.(“’p@)i {:,% X C/N 2 /j J,—,,\(((wq,)wc—w;)‘) S(“"((P*Qa)“’o*"‘“’s))é( # P"C'C~ (153)
" p

The single particle spectrum is a line spectrumat frequencies +Q°)(U° +muwg . Around
every betatron line (p-+ Q.)w, there is an infinite number of synchrotron satellites
the amplitude of which is given by the Bessel function ;L“«&P+QJQ%—Q&)£) . It is impor-
tant to notice that the spectrum is centered around wg . This is one of the fundamental
differences between transverse and longitudinal cases. For standard machines, the uncorrec-
ted chromaticity ; is negative. Therefore, according to definition (149), uu§ is a nega-
tive frequency above transition energy and a positive frequency below.

2.4 Distribution of particles

The next step consists of gatheg}ng particles to form a bunch. To this end, we intro-
duce a distribution function &~ */’C/(flxlk) that is split into two different parts, a
stationary distribution and a perturbation.

3.4.1 Stationary distribution

In the absence of perturbation ﬁ and é are constant during the motion. Therefore
the stationary part is a reelistic function of the two peak amplitudes 19;(},%) . We will
assume no correlation between transverse and longitudinal planes and we will write the
stationary part as the product

Y, - 30(%) /Io(%) | (154)

of two stationary distributions,one for each phase space.
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Je) and (%) can be one of the functions already suggested in the previous section
((25) through (28)) for instance

Jjo(éj cde =4 G)xdx =2 . (155)
in T

In the following, our numerical examples will assume a water bag distribution (28) in
the longitudinal plane.

Since on an average, the beam center of mass is on axis, the transverse signal as well
as the transverse dipole magnetic field induced by the stationary distribution are null.

S o) = N {440 g0z dedi dpdy=0 (156)

N is the number of particles per bunch.

Indeed, because of the current, there is some space charge quadrupolar magnetic field
that adds to the external guide field and that changes transverse focusing. The incoherent
@Q value is different from C2° (from now on, we will assume that the effective transver-
se tune is @ , and we will change R, into Q in the equations). Nevertheless this is not
the type of field we are concerned with in this section.

3.4.2 Perturbation

In order to get some dipole field, we introduce a density perturbation AT{lthat
simulates a beam center-of-mass displacement along the bunch. The mathematical form of
the perturbation is suggested by the single particle signal. As a matter of fact, because
of the integral over Qo and he signal induced would be null unless one introduces
the complex conjugate of J),&( Lf.,*"\‘\/ ) in the expression of AY .

So, in considering a single value of m , let us write the perturbation as follows

AV - J‘mﬁlﬁ) Cj@uﬂh‘}‘e) ejAwmt (157)

with chM: w, - mwg

Then, in the time domain, the signal takes the following form:

S_LUC‘@): ews N Zg [(I’*Q)"‘” §) ]/9\ (z,k) € (‘ri-) 1((”@ 2’(‘ dedx A‘{JJ‘{; (158)

4

In the frequency domain,

5,(w9) =

_1p®
2 ZF, ex”) a.(p é(w—(wg(‘aw)u),)) (159)

. _ -m A A J ( ) ) "LA
with O—m(l’) ol /A ’Q‘m(t/x) m[(‘nq W, - z &% dz (160)
we obtain a line spectrum at frequencies w = ( +Q)w, + muwg . In comparison with the
rich spectrum of the single particle, a single synchrotron satellite remains. The pertur-
bation is coherent with respect to satellite number wm .

By means of the perturbation, we have arranged the transverse initial conditions of
the particles in the, bunch. Particles on a given synchrotron orbit T have the same peak
betatron amplitude X . This is included in m(i,&) . Furthermore, their betatron phase
and their synchrotron phase are chosen in order to satisfy

LPo-l-’l'v\ k{JO = constant
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The result of this perturbation is that the position of the center of mass changes along
the bunch.

We have also assumed that, in phase space, the distribution does not rotate at inco-
herent frequency Qwo+mc~)$ exactly but at frequency Qwo + W, . The goal we aim at
consists in finding out the values of the coherent betatron frequency shift ASukm. Its
imaginary part will tell us whether the perturbation will increase or will be damped.

We will come back to the physical meaning of ,&M(%,Q) when we describe the
coherent. modes of oscillation later on.

As was the case for longitudinal instabilities, we will distinguish two regimes.

At low intensity, the coherent betatron frequency shift will remain small when compa-
red to the incoherent synchrotron frequency wy .

Aw, <L wg . (161)

Therefore, two adjacent perturbations associated with two successive values of m oscillate
independently. One can study them separately (equation (157)).

On the other hand, for increasing current, the frequency shifts get larger and it is
necessary to sum up several elementary perturbations

AY - 2 /&m(i,?) e:J(L?°+my°) Czl(wc-mw,)t . (162)

3.5 Transverse coupling impedance

Because of the initial slight displacement of the beam which oscillates from side to
side in the external focusing field, we get a differential current which creates a trans-
verse dipole field. This field perturbs the particle motion.

3.5.1 Definition of the transverse coupling impedance

As previously in the case of the longitudinal plame, we introduce a key para-
meter of the machine, the transverse coupling impedance Z,(w) which gathers all the
characteristics of the electromagnetic response of the machine to a passing particle. The
coupling impedance allows us to express the transverse field in terms of transverse signal.

- —> . wt
E &+ Pe i\—g (k,0)= 4P Zﬂ“’) 5;(“"9) X dw (163)
1 2wR

;Z;!uﬁ is expressed in ohm/m.

3.5.2 Transverse coupling impedance of a circular machine

The main components of the transverse impedance of a standard circular machine are
listed hereunder and sketched in Fig. 26.

a) resistive wall component
Peaked at low frequencies, it is the principal source of transverse instabili-
ties. When assuming a thick wall vacuum chamber, the impedance can be written

leff‘&i = Qh,l) R z Sr(ﬁf)% (164)

b ° " \w

with the same notations as in equation (49).

b) parasitic resonators
High Q resonances can be found in RF cavities, septum tanks and kicker
tanks.
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c) broad band impedance
The broad band component of the impedance takes into account the numerous
cross section changes of the vacuum chamber. It can be roughly derived from the longitudi-
nal broad-band impedance (equations (51) through (54)) as follows.

Zlé:) . 2o 2w (165)
bt w

In fact, the above convenient relationship between Z,(w) and Zy (), is strictly valid for
the resistive wake in a round pipe, at frequencies well below the pipe cut-off frequency.

It is a quiet good approximation as far as the broad-band impedance is concerned. It does
not apply for other components of a machine impedance.

Because of equation (165), Z (w) has the same form as Z,(w)A (se%. Fig. 26). It is
interesting to notice that the transverse BB impedance varies like b~ . In other words, it
gets larger when the pipe radius is reduced.

d) space charge component
When a round beam of radius @ circulates in a round pipe of radius L , the
space charge component is given by

Z (w):-ﬁ& 4 _ 4 (166)
Lse. poasla ¥

It is a negative inductance that can be large for low P particles.

The actual impedance seen by the beam is the sum of the components listed above.

T Z.L(w)

ruwohioe wqw.

/uAmtht

A?ua J\:uuac

Fig. 26 Qualitative description of transverse impedances for
various components (full line = real part, dotted line =

imaginary part)

3.6 Equation of coherent motion

We consider a distribution function that sums up a stationary part Y (equation
(154)) and a perturbation AY (equation (162)).

o Al
Y. 1“(%) {_(i) + § /ka(%,)() elx

g, +m \}{) a/l(wc— mw)t

(167)
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Then, we use Vlasov's equation

RE SN AE INL 4

. SNPLYE "fezo (168)
ok DT

and we drop second order terms with respect to the perturbation in order to end up with

+my, we-m k
,1 § (wc-/mws) /plm(i/;) e"lw)° W ej( “ ‘j“)?'ﬁ' X . (169)

In the right hand side of the linearized Vlasov's equation, it is 341) but not
’Dﬂo,ﬁbz, that appears. This is the reason why a water-bag bunch can be assumed in the pre-—
sent case.

n
The expression of X can be drawn from single particle equation of motion (146).

Q - % Fc = - M_ -_QY.[? +[§j/\§} (k,e:wo(k—l)) o (170)
¢ ™ 1

In the right hand side, the coherent transverse electromagnetic '"force'" F; can be
written

F—c S LD W Z.L(P) %o (P) c—”wo(k’c)"'1((?@)““%)/& (171)

¢k mOX ™ p

when equations (163), (159) and (160) are used.

After Fc has been combined with Aim kf and MP 1((”4)%-«0%)?, has been develop-
ped according to equation (12), one gets

A +my (w-mw,)E
A =- J,:n“cIiQ > Z jj[((i”f@ “”;” 4 . (72

This allows us to rewrite equation (169)

1 A (t x)‘u)c "“"‘s) = ; :TC];Q ? Z 7(p) /j [((r+q)w°-w§}%] aﬁ) %E": (173)

where O"(P) = ; G-"\(F) (174)

is the amplitude of the spectrum of the signal induced by the perturbation at frequency
(p+QIw, + wWe A n

Both sides of equation (173) can be multiplied by X and integrated over X values.
In the right hand side the integral is easy to perform

[\ 0
'E_to xdx o= -2 J&(ﬁ\“i -4 (175)
X R s
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It leads to

,1(w¢-mu>s) %m(ili) Kl - -eL Z Z P G‘(P)j [( (prQ)a- “’g)] j(-c) (176)

ImcXQ
0

It is important to notice that the transverse stationary function 1od)has disap-
peared. Only the longitudinal function aég) remains in the equation. The problem we are
dealing with concerns the beam center of mass essentially. On an average, the detailed
betatron motion of individual particles around the center of mass can be disregarded.

The same comments must apply to the perturbation /& (t x) . As a matter of fact, the

quantity of 1nteres} is the averaged peak betatron amplltude (t) associated with a given
synchrotron orbit T

Xwﬁ)can be defined as follows.
A A AL (A
%(( X(c «Q\ Wz, %) % x . (177)

The final form of the equation of coherent motion of a single bunch is

’““’c‘m“’s) f(m('i) ;i-{-‘{QZE Z )6’(?)3 [7+Q w;)] . (178)

From equation (160), the new form of ck(P) (see equation (174)) is

)
Jm {((YJ'Q)“’J“);) %] }@) ;(M(%)é dz (179)

-m

qm(f) = 3

For transverse motion, equation (178) replaces equation (84).

3.7 Coherent modes of oscillation

The general properties of the solutions as well as the different ways to solve equa-

tion (178) have been already described in section 2.6. We will develop the eigenvalue
method for instance.

Then, both sides,of equation (178) are multiplied by 3 ;I {QXNQk) ) ] a(ﬁ z Al

and integrated over U  values.

Imc¥q p

*}\“’c”“‘“’s) q;([) el ZZ (p) 6Tp) J"\[((P*Q)“L’wg)z]l(Q*Q)‘“")h(‘)‘i (180)

3.8 Low intensity coherent modes of oscillation

We are assuming a low intensity bunch interacting with the different components of
the impedance of a ring. A single value of m is retained in the perturbation (157)

We define the matrix element
o

K;; = _e:_[__ (’1ZJ.U’)) J ((LQ)w W, ) ] [((rﬂ'-?) w,-u) ) ]tj(t 2de (181)

dm c¥q
o
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and rewrite equation (180):

m
(wcm-mds) g, ) = Z;_:- K{P aa(p) . (182)
m
When comparing the K{’ 's associated with transverse (181) and longitudinal (103)
coherent motions, one can draw two conclusions.

First, the value m=z= o is allowed now.

Second, in the integral rb%e,43