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Abstract

Particle therapies are becoming increasingly available clinically due to their beneficial energy deposition profile, sparing
healthy tissues. This may be further promoted with ultra-high dose rates, termed FLASH. This review comprehensively
summarises current knowledge based on studies relevant to proton- and carbon-FLASH therapy. As electron-FLASH
literature presents important radiobiological findings that form the basis of proton and carbon-based FLASH studies, a
summary of key electron-FLASH papers is also included. Preclinical data suggest three key mechanisms by which proton
and carbon-FLASH are able to reduce normal tissue toxicities compared to conventional dose rates, with equipotent, or
enhanced, tumour kill efficacy. However, a degree of caution is needed in clinically translating these findings as: most
studies use transmission and do not conform the Bragg peak to tumour volume; mechanistic understanding is still in its
infancy; stringent verification of dosimetry is rarely provided; biological assays are prone to limitations which need greater

acknowledgement.

Keywords FLASH radiotherapy - Ultra-high dose rate - Proton therapy - Carbon therapy - Normal tissue sparing -

Biological mechanisms - Cancer treatment

Introduction

It is recommended that X-ray radiation therapy (RT) be
included in the treatment of 50% of all cancer patients
in developed countries worldwide, making it one of the
most common modes of treatment available currently [1].
Accounting for only 5% of total cancer therapy costs, as
well as being a non-invasive technique, it is appealing in
both its low economic burden and practicality [2]. Although
there are significant advantages to utilising conventional
X-ray RT, this modality has the potential to cause detrimen-
tal off-target effects, inherent in the physics involved. Due
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to exponential absorbed dose by an X-ray beam, normal tis-
sues are exposed to radiation prior to entering, and upon
exiting, a tumour site. This may produce severe, negative
side effects in patients if highly sensitive tissues lie within
the radiation track [3]. For instance, the potential tissue com-
plications that can result from lung irradiation include early
onset pneumonitis, late onset fibrosis (occurring in 5-20%
of patients), and risks of heart or spine irradiation depending
upon tumour location [4]. The risks that RT complications
present are amplified in paediatric patients. Brain irradia-
tion presents risk of cognitive decline and growth hormone
deficiencies in paediatric patients compared to their healthy
peers [5, 6]. Second malignancy induction is also a promi-
nent issue in the paediatric and young adult population due
to their longer survivorship period [7]. Therefore, limiting
the degree of normal tissue damage, and consequent accu-
mulation of toxicity, is pivotal in preventing late effects
from occurring. Despite success of RT to date, there is
still demand for new and innovative treatment modalities
to mitigate radiation damage to peripheral normal tissues,
with advances being essential for improving both the rate of
cancer survival and the quality of life of patients after treat-
ment. Identifying irradiation techniques which broaden the
therapeutic window by minimising normal tissue damage
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will allow for a lower incidence of negative side effects in
patients, and even allow for greater radiation doses to be
delivered to improve the probability of tumour control [8].

Particle therapy is one such modality that is continually
being developed and currently being employed clinically
for this reason. It employs the use of high Linear Energy
Transfer (LET) particles to irradiate treatment volumes
with minimal exit dosage compared to X-ray photons (low
LET), reducing irradiation of surrounding healthy tissues.
X-rays deliver their maximum dose at the point of electronic
equilibrium and then attenuate exponentially as they pass
through the remaining tissue, prior to and upon exiting the
tumour. Conversely high LET particles, including protons
or carbon ions, have low energy deposition upon entry and
maximum deposition at the Bragg Peak towards the end
of their track. Particle therapy centres are now employing
intensity modulated and pencil beam scanning techniques,
which target tumours in layers of irradiation spots at dif-
fering doses, depths, and positions [9]. The benefits of such
treatment include better dose conformation, minimisation of
damage to healthy tissues and an increased total dose that
can be administered [10]. Use of high LET particles, partic-
ularly carbon ions, allows for efficient treatment of radiore-
sistant tumours localised within critical organs where X-ray
or proton beam therapies would be ineffective.

The resurgence of studies involving irradiation of tissue
at ultra-high dose rates, also known as FLASH radiation
therapy (FLASH-RT), alongside development of proton and
carbon ion therapies, are steps towards further improving
the therapeutic efficacy of RT. FLASH-RT typically deliv-
ers absorbed dose rates greater than 40 Gy/s to irradiate
tumours in very small timeframes (<1 s), as opposed to
conventional dose rates (CONYV, <0.1 Gy/s) which are nor-
mally fractionated and delivered over the course of minutes
[11]. There is some evidence that the utilisation of FLASH
technique, even with photon or electron beams, results in a
radioprotective effect in normal tissues, which reduces tox-
icity compared to CONV. Multiple mechanisms have been
hypothesised to explain this phenomenon, including rapid
intracellular oxygen depletion preventing indirect DNA
damage via reactive oxygen species (ROS) [12], alterations
to the nature of DNA damage and DNA repair pathways,
and immune response modulation [13]. However, the radio-
biological processes by which these mechanisms occur dur-
ing FLASH-RT are not well understood. All these factors
are thought to contribute towards the unique normal tissue
sparing effect of FLASH-RT, which has been previously
demonstrated in vivo for photons, electrons, and heavy ions.

Incorporating the differential tissue response of the
FLASH concept with the normal tissue sparing of par-
ticle therapy may prove to be beneficial when utilised in
combination. Taking advantage of proton or carbon ion
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beam’s characteristics - particularly their minimal exit dose
- alongside the normal tissue sparing properties afforded by
FLASH, there is the potential to synergistically minimise
healthy tissue toxicities. Although there are multiple stud-
ies outlining the biological outcomes of the FLASH effect
with electrons and X-ray photons [14—16], few studies have
explored the implications of using proton or carbon ions at
ultra-high dose rates in vitro and in vivo. This systematic
review summarises available literature detailing FLASH-
RT’s discovery, its implementation in electron, proton and
carbon ion-based studies, as well as discussion of conflict-
ing data concerning the various hypotheses that form the
basis of these studies. Overviews of theoretical, in vitro,
and in vivo particle beam studies relevant to ultra-high dose
rates, and their effect upon normal and cancer cell biology,
are the primary focus with the aim of understanding current
state of knowledge on mechanistic benefits that could fur-
ther improve particle therapy outcomes in the future. From
literature captured by the systematic search strategy, this
review provides: a brief history of electron FLASH experi-
ments; its recent resurgence in the literature in terms of in
vitro, in vivo, and even clinical application; and the current
state of research into FLASH delivery of protons and carbon
ions.

Methodology
Systematic review process

To produce an accurate overview of the biological mecha-
nisms of the FLASH effect, a systematic review of all litera-
ture pertaining specifically to particle-FLASH (excluding
electrons) has been compiled. Since electron-FLASH pub-
lications were amongst the most prevalent throughout ini-
tial FLASH searches, the key electron-FLASH studies were
included in a non-systematic manner in this manuscript to
provide background and context to the particle-FLASH
studies identified throughout the systematic process. The
progression of the electron-FLASH field has been essential
in providing preliminary data that will aid in translation into
the particle-FLASH field.

The inclusion criteria for literature within review include:

e Scientific articles. Conference abstracts and reviews
were excluded.

e Findings only pertaining to the radiobiological effect
of ultra-high dose irradiation on normal and cancer-
ous cellular function and response. Technical develop-
ments pertaining to proton and carbon-ion delivery were
excluded.

e [nsilico, in vitro, in vivo, and clinical studies.
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e Studies utilising ultra-high dose rates, defined as an
average dose rate of greater or equal to 40 Gy/s.
Articles published between the years 2009-2022.
Language restricted to English (translations also
accepted).

In completing this process systematically, multiple search
criteria were utilised with increasing degrees of complexity
(additional search terms, higher search specificity). Table 1
below outlines the set of search criteria used to identify
proton and carbon-FLASH literature performed on the 8th
December, 2022.

Studies from search #4 of Table 1 were added to the
studies found in the initial literature searches. In addition
to utilising Scopus and Medline to compile resources, other
articles were found via selecting relevant citations from
systematically identified literature (pearling). Finally, addi-
tional sources were identified via grey literature searching
with Google Scholar. This resulted in the culmination of 110
publications, which were then screened by IK to validate
their relevance, followed by EB to resolve any disagree-
ment in relevance between IK and JA. The final number of
systematically identified proton and carbon therapy papers
was 34. A diagrammatic summary of the PRISMA search
strategy utilised for this systematic review is displayed in
Fig. 1. PRISMA guidelines were followed in the literature
identification and exclusion process [17]. Relevant electron-
FLASH papers identified in a non-systematic manner were
summarised in table format (Table 2), with systematically
identified particle-FLASH literature being summarised in
the same manner (Table 3), listing year of publication, par-
ticle type, irradiation source and mode, model (e.g., in vitro,
in vivo), particle energy (MeV), doses (Gy), delivery time,
pulse/burst count and rate, FLASH average and instan-
taneous dose rate per fraction (Gy/s), comparative low or
CONV dose rate, (Gy/s) and key experimental conclusions.
Throughout the text, average dose rates are discussed unless
specified.

History of FLASH radiotherapy

Although the first publications that cite the use of radia-
tion at ultra-high dose rates did not initially quote the term
‘FLASH’ irradiation, coined by Favaudon et al. in 2014
[18], interest in the field was motivated earlier by exploring
the relationship between radiation dose rate and biological
response. In 1958, Kirby-Smith and Dolphin published one
of the first papers that suggests a dose rate dependent effect
on DNA lesion formation, showing that in a Tradescantia
(spiderwort plant) model, the total number of chromosome
aberrations was reduced when electrons were administered
at higher dose rates of up to 4x10° Gy/s [19]. The effect
of cellular oxygenation on cellular radiosensitivity was also
topical, and in 1959 Dewey and Boag presented a radiobio-
logical relationship between dose rate, cellular oxygenation,
and cellular survival. They aimed to observe the effect of
dose rate on the surviving fraction of Serratia marcescens
bacteria, whilst modifying both total irradiation dose and
the concentration of dissolved oxygen. Bacteria were irradi-
ated in the presence of both CONV X-rays (0.1 Gy/s) and
ultra-high dose rate electrons (5x 107 — 10x 10® Gy/s) with
total absorbed doses ranging between 0 and 200 Gy, and also
varying oxygen concentrations (100% O,, 1% O, in N, and
100% N,). The proportion of surviving bacteria was higher
at the ultra-high dose rate irradiation, which was comparable
to the radioprotection afforded under anaerobic conditions
at the conventional dose rate [20]. This was theorised to be
a result of the initial absorbed dose of radiation ‘consum-
ing’ the oxygen dissolved within the irradiated bacterium,
thus preventing the production of harmful reactive oxygen
species that would usually result in cytotoxic DNA dam-
age and apoptosis. Also lending to the theory, the authors
suggested that the irradiation timeframe was so minute, that
even if dissolved oxygen was not completely removed from
the extracellular environment, it would not be able to re-
enter the cell rapidly enough for the radiation pulse to dis-
sociate it. This theory, termed the ‘oxygen effect’, would
consequently form part of the hypothesis behind the healthy
tissue sparing effects of FLASH irradiation. Similar pub-
lications around this time held interest in the relationship

Table 1 Search strategy for proton- and carbon-FLASH articles, utilising an expanded set of FLASH, proton, and carbon therapy search terms. A
total of 62 experimental studies were yielded from Scopus and Medline searches after duplicates were removed

Search # Search Terms Scopus Medline

1 “FLASH-RT” OR “FLASH radiation therapy” OR “FLASH radiotherapy*” OR “FLASH effect*” 662 396
OR “FLASH irradiation” OR “Ultra-high dose rate*”

2 “Proton therapy” OR “Proton beam therapy” OR “Proton radiation therapy” OR “Proton radiother- 12,562 8,447
apy” OR “Proton beam irradiation”

3 “Heavy ion radiotherapy” OR “Heavy ion radiation therapy” OR “Carbon ion therapy” OR “Carbon 2,468 2,090
ion irradiation” OR “Carbon ion radiotherapy” OR “Carbon ion radiation therapy” OR “Carbon beam
therapy”

4 FLASH AND (Proton therapy OR Heavy ion/Carbon therapy) (#1 AND (#2 OR #3)) 78 37
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Screening and Eligibility

Included

Records identified via
Scopus searching

Records identified via
Medlline searching

n=78

n =37
v

removed
n==62

Records after duplicates

L

Y

y

Records identified via
additional
database searching
n=27

Records identified via
other sources (Pearling,
Grey Literature)
n=21

l

J

:

n=110

Records screened (article type)

Articles excluded
n=39

Y

n=71

Records screened (title/abstract)

\

Articles excluded
n=16

Y

n=55

Reports assessed for eligibility

Articles excluded
n=21

\

Studies included i
n=34

n review

ogy discovered whilst reading through relevant literature and searches
repeated in both databases. Sources were then reviewed by co-authors
of this review and categorised. 34 proton- and carbon-FLASH studies
are incorporated into the final review

Fig. 1 PRISMA flowchart summary of the search strategy employed
in this systematic review. Search terms were filtered through either
Scopus or Medline databases and then excluded based upon their rel-
evance to the radiobiological effect of FLASH and ultra-high dose
rates. Additional terms were then added from keywords or terminol-
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between dose rate and ROS concentration [21], and if there
were analogous FLASH effects in E. coli [22].

Further work looking into the dose rate effect in the sur-
vival of mammalian cells was conducted by C.D. Town in
1967. Using 3.5 x 107 Gy/s electrons, experiments were con-
ducted comparing HeLa cell survival as a function of radia-
tion dose, between single and double pulses of radiation.
When cells were exposed to doses higher than 10 Gy, there
was an apparent sparing of tissues; cells treated with doses
administered in a single burst of radiation had a higher sur-
vival fraction compared to irradiation over two pulses. To
validate whether this tissue sparing was related to the oxy-
gen effect, an additional test, wherein cell suspensions were
exposed to either nitrogen or air, was performed. Single
pulse irradiations under aerated conditions resulted in simi-
lar cell survival curves to that of irradiation under anaerobic
conditions (at doses exceeding 10 Gy) [23]. These findings,
similar to Dewey and Boag’s S. marcescens experiments,
supported that the ‘oxygen effect’ is not limited to bacterial
cells; indeed, there was sufficient evidence alluding to its
role in mammalian cell protection. In the present day, the
definition of the ‘FLASH effect’ phenomenon has formed
as the sparing effect ultra-high dose rates have upon healthy,
but not cancerous, tissues in vivo, whereas this was not the
primary aim of these initial studies. Nevertheless, they high-
light the discovery of dose-rate dependent radiobiological
responses, and paved the way for FLASH’s re-emergence
as a potential cutting-edge treatment modality decades later.

Electron FLASH
Resurgence of FLASH

Studies concerning ultra-high dose rate irradiation faded
into obscurity for some 30 years until its sudden resur-
gence in the 2010s. Although in previous publications in
vitro experiments predominated, more recent work aimed
to identify how ultra-high dose rates benefited normal tis-
sues in vivo. Radiation-induced pulmonary fibrosis is a side
effect [24] with the potential for treatment-related death
following external beam irradiation [25]. As such, multiple
in vivo studies have been performed to determine whether
utilising ultra-high dose rates may elicit a greater differen-
tial response between normal and tumour tissue damage
compared to current clinical dose rates. A summary of the
experimental results of these electron-FLASH papers is pre-
sented in Table 2 below.

In vivo studies of tumour treatment

Favaudon et al. (2014) demonstrated a sparing effect in
mice after bilateral thorax exposure to single pulse, FLASH
dose rate electrons (60 Gy/s, 4.5 MeV). Mice exposed to a
total dose of 17 Gy at 0.03 Gy/s, representative of a conven-
tional clinical dose rate, exhibited fibrogenesis initiation at
8 weeks post-irradiation, and progressing to intraparenchy-
mal fibrosis at 34 weeks. Conversely, exposure to 60 Gy/s
electron-FLASH (same total dose) did not develop pulmo-
nary fibrosis after treatment. Activation of the Transforming
Growth Factor Beta (TGFf) cascade, a characteristic path-
way in fibrosis pathogenesis, was also prevented. In subse-
quent dose escalation experiments, 30 Gy absorbed electron
dose was the minimum required dose to induce fibrosis at
FLASH dose rates. The relative biological effectiveness
of both dose rates was comparable; growth of HBCx-12 A
and HEp2 tumour xenografts was inhibited irrespective of
FLASH or CONV dose rates, although FLASH irradiated
mice exhibited a skin sparing effect [18].

Zebrafish studies

Montay Gruel et al. (2019) displayed a FLASH sparing
effect in zebrafish embryos [36]. In this study, alterations
to the length of FLASH irradiated zebrafish embryos was
significantly less than CONV irradiated embryos 5 days
postfertilization, where irradiations occurred at 4 h postfer-
tilization. When zebrafish were preincubated with an anti-
oxidant, FLASH exhibited no further sparing effect, whilst
the embryos were spared from CONV induced radiation
damage [36]. Another zebrafish embryo model was used by
Pawelke et al. (2021) to validate whether the pulse dose rate
and oxygen levels used during irradiations masked a poten-
tial FLASH effect. 26 Gy of 20 MeV electrons at a continu-
ous, conventional dose rate of 0.1116 Gy/s were compared
to FLASH with a mean dose rate of 1 x 10> Gy/s, and zebraf-
ish embryos were irradiated within vessels at differing pO,
levels. A sparing effect was observed in this study at pO,
levels below atmospheric oxygen levels (<148 mmHg)
with a greater degree of protection afforded at <5 mmHg
(hypoxic conditions). Whilst FLASH-RT appeared to have a
mild protective effect over CONV-RT at both pO, levels, at
high pO, levels, FLASH and CONV-RT zebrafish morphol-
ogies exhibited minimal differences, whereas the effect was
more substantial at low pO, [48]. This included preventing
the reduction of embryo length and eye diameter by 4%, as
well as a 20% reduced rate of PE and SC in comparison to
low dose rate, quasi-continuous irradiation.
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Mice brain studies

With the prospect of FLASH minimising healthy tissue dam-
age, its effectiveness in the treatment of brain tumours is of
extreme relevance clinically, particularly in paediatrics. In
this respect, in vivo whole brain irradiation electron-FLASH
studies are prevalent. Alaghband et al. (2020) displayed an
apparent radioprotective effect in brain tissue of mice fol-
lowing FLASH irradiation. After exposure to 8 Gy, 6 MeV
electron irradiation at 4.4x 10® Gy/s (FLASH), neurocog-
nitive test results were indistinguishable from the control
group, whereas conventional irradiation at 0.077 Gy/s with
6 MeV electrons caused substantial cognitive detriment. The
benefit of FLASH, when utilised in the brain, was reduced
neurocognitive impairment, attributed to the preservation
of neurogenetic niche and neurogenesis. Mice irradiated
at conventional dose rates observed a lower proportion of
mature and immature neurons 4 months after irradiation.
Additionally, a two-fold reduction in plasma growth hor-
mone expression was also observed a week post treatment
in comparison to controls, suggesting conventional irradia-
tion also impairs pituitary gland function. These side effects
were not observed in FLASH-irradiated mice [38]. Other
whole brain irradiation studies displayed similar findings at
and exceeding 100 Gy/s [32], including but not limited to:
200 Gy/s, 300 Gy/s [37], 2.5x10% and 5.6 x 10° Gy/s [39,
41].

Higher order animal models

Demonstration of the electron FLASH effect is not lim-
ited to in vivo mice experiments, with implications in both
mini-pig test animals and cat patients. Mini-pig irradiation
at 300 Gy/s compared to 0.083 Gy/s markedly reduced dam-
age to skin tissues, avoiding signs of acute toxicity including
inflammation, ulcer formation and hair follicle destruction
[33]. Additionally, late skin fibronecrosis was limited to
CONV irradiated pigs, with FLASH experiencing no tis-
sue complications at 36 weeks after 28—-34 Gy irradiations.
Six cat patients diagnosed with squamous cell carcinoma
of the nasal planum were also FLASH treated, resulting
in a progression free survival (PFS) of 84% at 16 months
[33]. Side effects were limited to acute mucositis in half of
the patients, and depilation across all cat patients. Although
the sample size of this study is limited, it is some of the
first evidence displaying no notable toxicity of FLASH in
higher mammal models. One key limitation is that there are
no experimental groups within this study irradiated at con-
ventional dose rates; only retrospective data are referred to
in drawing conclusions in this aspect. PFS ranged from 50
to 80% within other conventional dose rate trials [49]. This
is promising in its potential applications in human patients,

with regards to increasing total dosages (thereby improving
tumour control) whilst also mitigating side effects.

Recently, a similar in vivo study by Kondradsson et
al. (2021) attempted to identify potential adverse effects
and treatment procedures required to administer electron-
FLASH in canines with microscopic residual disease and
spontaneous superficial solid tumours. Ten patients were
prescribed doses ranging from 15 to 35 Gy, with aver-
age dose rates ranging between 400 and 500 Gy/s. 11 out
of 13 irradiated tumours presented with either a complete
response, partial response, or stable disease. Out of the
10 patients, only one experienced a grade 3 adverse skin
event after a 35 Gy dose to the nasal planum, characterised
by moist desquamation. Other adverse events appeared to
be mild during follow up examinations 3—6 months post-
treatment, including alopecia, dry desquamation, and ery-
thema [50]. Akin to the feline-based study conducted by
Vozenin et al., the key limitation to this preclinical trial was
no comparative conventional dose rate group to compare
adverse effects and disease response efficacy. It would be
greatly beneficial for future in vivo work with canine and
feline models to include conventional dose rate groups so
that more accurate comparisons may be drawn. However,
the feasibility in completing comparative experiments such
as these may be difficult due to ethics considerations.

First-In-Human case study

The first-in-human case study of FLASH irradiation was
reported in 2019 on a 75-year-old male with a multi-resistant
cutaneous lymphoma, which had metastasised to multiple
sites across his skin’s surface [34]. The patient had expe-
rienced unfavourable side effects from the previous treat-
ment of approximately 110 tumour sites with either MV/kV
X-rays or low energy electrons. Regardless of the relatively
low radiation doses and fractionation regimens employed
(20 Gy in 10 fractions or 21 Gy in 6 fractions), skin con-
tinued to respond poorly, requiring up to 4 months to heal
damage at irradiation sites 3—4 cm in diameter. FLASH was
therefore administered due to its previous implications in
the sparing of healthy tissues whilst maintaining tumour
control efficacy comparable to that of conventional dose
rates. In this trial study, 5.6 MeV electrons at a dose rate
of 167 Gy/s and dose of 15 Gy was administered to one
of the patient’s most progressive ulcero-infiltrating tumours
3.5 cm in diameter. A 5 mm bolus was utilised, resulting in
a 90% isodose coverage depth of 1.3 cm. Grade 1 epitheli-
tis presented at 3 weeks post-FLASH, however 5 months
after therapy almost all trace of negative skin reactions from
treatment had receded (Figs. 2, [34]).

This study presents some valuable qualitative results
depicting the temporal evolution of the treated area to
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1b : 3 weeks

lc : 5 months

Fig. 2 Temporal evolution of the treated lesion: (a) before treatment;
the limits of the PTV are delineated in black; (b) at 3 weeks, at the
peak of skin reactions (grade 1 epithelitis NCI-CTCAE v 5.0); (c) at
5 months. Reprinted from Bourhis et al. 2019 [34], Copyright (2019),
with permission from Elsevier

provide comparisons between healthy and irradiated tissue.
The fact that this is the first clinical study using FLASH
dose rates is also substantial. However, it is limited in that
they exclusively analysed the short-term effect of FLASH
on cancerous skin tissue alone; the effect that electron
FLASH would have on other organs of different tissue
depths and morphologies based on this data is unknown.
Regardless, this result bodes well for further clinical trans-
lation, as limiting inflammation is still greatly beneficial for
patients experiencing radiation induced skin complications.
Further translation clearly requires additional indications to
display the benefits of this treatment modality, (e.g., irradia-
tion of brain, lung, or liver tumours) would represent more
complicated anatomy where improvement in outcomes is
needed. Additionally, there were no conventional dose rate
irradiations conducted within this study to directly compare
the FLASH treatment to; all irradiations were FLASH only
[34].

Proton-FLASH
In vitro studies

Although proton-FLASH studies are not as widespread as
those conducted with electrons or X-ray photons, many of
these models also reinforce the relationship between ultra-
high dose rates and normal tissue protection. It is of note
that save for proof-of-concept dosimetry planning by Wei
et al. [51] and 6 experimental studies [52][53—-57], herein to
our knowledge, that no other papers either explicitly state or

@ Springer

utilise the high LET Bragg peak region for proton-FLASH
irradiations.

Buonanno et al. (2019) presented one of the first studies
to analyse the long-term radiobiological effects of FLASH
proton irradiation in vitro, particularly in non-cancerous
human cells. At three different instantaneous dose rates:
0.05 Gy/s, 100 Gy/s or 1000 Gy/s, IMR90 lung fibroblast
cells were irradiated with 0—10 Gy of 4.5 MeV protons and
a colony forming assay conducted. Altering dose rate did
not appear to have a dramatic impact upon cell survival,
with no significant difference between the fraction of sur-
viving cells across all dose rates and total doses adminis-
tered. This aligns with previous studies observing the effect
of proton dose rate on cellular survival, with dose rates
exceeding 10° Gy/s having no effect on colony formation
compared to conventional dose rates for Human umbilical
vein endothelial cells (HUVEC) [58], V-79 Chinese Ham-
ster cells [59], or human-hamster hybrid cells (A;) [60].
Interestingly, this effect carries over into cancer cell clono-
genicity, with human derived cervical cancer cell line HeLa
[61, 62] exhibiting no dose rate dependence upon cellular
survival post irradiation.

In quantifying DNA damage, exposure to 20 Gy absorbed
proton dose delivered at a FLASH instantaneous dose rate
of 1000 Gy/s displayed a statistically significant reduc-
tion in YH2AX fluorescence 30-minutes post-irradiation
compared to both 0.05 Gy/s and 100 Gy/s protons [63].
Although this finding initially appears promising, it is lim-
ited by the immunolabelling techniques used to acquire
data. Specifically, the resolution at which microscopy was
performed (40x) and an apparent plateau of YH2AX fluo-
rescence for doses > 10 Gy suggests that accurate distinction
of foci could not be obtained due to saturation above this
threshold. At a dose of 20 Gy, approximately 700 double-
strand breaks (DSBs) could be expected considering the for-
mation roughly 35 DSBs/1 Gy [64]. One may assume that
such a high number of YH2AX foci would prevent defini-
tive resolution of the true number of DSBs formed, and thus
lead to the saturation observed > 10 Gy. This is a factor that
needs to be taken into serious consideration in future work,
as this will determine the doses at which the FLASH effect
maximally prevents normal tissue DNA damage. Addition-
ally, these results seem to contradict other studies analysing
dose rate effects on DSB production via YH2AX [65—67]
and 53BP1 [66, 68] immunofluorescence, which show a
non-significant induction of these foci between FLASH and
CONV dose rates.

Further tests to quantify markers of cellular senescence
and inflammation (at 20 Gy, 1000 Gy/s) also showed
reduced proportions of [-galactosidase positive cells
I-month post-irradiation (40% fewer vs. CONV) and
TGFB1 induction 24 h and 1-month (4.4-fold and 4.3-fold
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decrease respectively) post-irradiation [63]. At 100 Gy/s,
the only significant difference was ~20% fewer B-gal
positive cells compared to CONV, which may suggest that
higher dose rates more effectively mitigate long-term cel-
lular senescence.

These data scratch the surface of which factors modu-
late the proton-FLASH effect, illustrating that tissue pro-
tection may be more heavily reliant upon modifying gene
expression in response to radiation exposure, especially
concerning inflammatory and senescent cellular pathways.
A summary table outlining all systematically identified pro-
ton and carbon-FLASH publications is presented in Table 3.

In vivo studies

One of the first papers to demonstrate in vivo FLASH
radioprotection using protons was published in 2020 by
Diffenderfer et al. [72]. A 230 MeV proton beamline with
dose rates of 78 Gy/s for FLASH and 0.9 Gy/s for conven-
tional irradiation were utilised in 15 Gy whole abdominal
irradiations of C57BL/6J mice. Akin to studies performed
with electron irradiation, FLASH irradiated mice exhibited
greatly reduced levels of acute intestinal damage, defined by
an increased number of EdU positive cells within abdomi-
nal crypts and increased crypt regeneration compared to the
conventional dose rate. Moreover, where symptoms of fibro-
sis were severe in conventionally irradiated mice, FLASH
irradiated tissues displayed intestinal morphology similar
to that of non-irradiated tissues 8-weeks post irradiation.
In a follow up experiment testing for tumour growth and
control probability in a flank injection, murine pancreatic
cancer model, no difference was observed between either
dose rate used and doses of 12 and 18 Gy [72]. This aligns
with previous claims that proton-FLASH has comparable
tumour kill efficiency to conventional dose rates. Yet, this
data is exemplary in highlighting the favourability of ultra-
high dose rates to both mitigate the inflammatory response
and maintain cellular proliferation after exposure. A murine
model conducted by Cunningham et al. also supports this,
wherein equivalent tumour control was maintained in a
squamous cell carcinoma FLASH irradiation compared to
CONV [74]. Additionally, when FLASH irradiating normal
hind leg tissue, there were decreased levels of TGFB1 24-
and 96- hours post irradiation, as well as a higher G-CSF
to GM-CSF ratio, both indicative of reduced inflammation
compared to CONV [74].

Similar experiments were performed by Zhang et al.
(2020) utilising an experimental beamline for whole
abdominal irradiations of mice, with average dose rates
of 120 Gy/s and 0.05 Gy/s for proton-FLASH and CONV
respectively. Mice survived doses of 13 Gy at either dose
rate and died within 15 days of 19 and 22 Gy irradiation.

However, an apparent differential effect was observed for
16 Gy irradiations, with 100% of FLASH mice surviving
versus ~40% at the CONV dose rate. In addition, FLASH
mice exhibited better weight retention 9 days post-irradia-
tion. Hematoxylin and eosin stains were also performed to
observe late effects 90 days post-irradiation. Both dose rates
showed mild signs of inflammation with inflammatory cells
infiltrating intestinal villi. Remarkably, FLASH irradiated
intestines appeared to exhibit reduced signs of inflammation
compared to CONV protons, evidenced by a lower propor-
tion of infiltrating inflammatory cells and thinner layer of
hyperplastic submucosa and muscularis [73]. In syngeneic
mice models, there is evidence that proton-FLASH produces
an improved tumorigenic response due to increased recruit-
ment and infiltration of CD3+T cells within the tumour
microenvironment [70]. These findings may be reflective of
the ability of FLASH to minimise interference with, or per-
haps aid in stimulating, the immune response.

Similar to the previously described electron-FLASH
experiment conducted by Pawelke et al. [48], Beyreuther
et al. [69] also performed zebrafish embryo irradiations, but
with 224 MeV protons at a CONV dose rate of 0.08 Gy/s
and FLASH at 100 Gy/s. The endpoints of this study were
relative embryonic survival and the rate at which morpho-
logical changes occurred, including pericardial edema (PE)
and spinal curvature (SC). Only 23 Gy irradiation appeared
to exhibit statistically significant differences between
CONYV and FLASH embryos with PE at 3- and 4-days post-
irradiation; dose rate did not appear to have a substantial
effect upon any other endpoints or at other doses [69]. Akin
to in vitro studies, the Bragg peak is not reported to conform
to targeted tissues throughout these experiments.

First-In-Human clinical trial

In December of 2020, recruitment began for the first proton-
FLASH clinical investigation, conducted at Cincinnati Chil-
dren’s Proton Therapy Center [83]. The focus of this study
was to assess the workflow of a palliative FLASH treatment
for bone metastases in the extremities of 10 patients aged 18
years or older. FLASH treatments were delivered at a dose
rate of 51-61 Gy/s, with single dose regimen of 8 Gy being
utilised on a total of 12 metastatic sites across all patients.
This was followed by assessment of radiation related nor-
mal tissue toxicities and adverse side effects in addition to
pain response, use of pain relief and pain flare [84]. Key
results from the study include 6 out of the 12 treated sites
experiencing a complete pain relief response, 2 of 12 sites
reporting partial pain relief, and 4 of 12 sites experienc-
ing pain flare following treatment. Twelve adverse events
were reported within this patient group, with eleven of these
being classed as grade 1 including skin hyperpigmentation,
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Fig. 3 Representation of the A
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et al. 2020 [87]

edema, erythema, fatigue, and puritus. One patient also
experienced grade 2 extremity pain 1 month post treatment.
FLASH was deemed clinically feasible in the palliative
treatment of bone metastases, with the efficacy of treatment
and the profile of adverse effects being analogous to con-
ventional dose rate radiotherapies regimes [85].

Carbon-FLASH

The representation of experimental carbon-FLASH litera-
ture, in a radiobiological context, is sparse, with only six
papers fitting the systematic criteria of this review. Two of
these papers, authored by Zakaria et al. [12, 86], outline the
potential anti-tumour benefits of carbon FLASH in silico.
Monte Carlo simulations produced 3-dimensional track seg-
ments of low and high LET carbon ions to draw compari-
sons between their energy deposition profiles. High LET,
4.1 MeV/nucleon carbon ions (~330 keV/um) exhibited a
significant production of radiolytic oxygen after movement
of the ions through water compared to lower LET carbon
ions. As molecular oxygen can act as a radiosensitiser, they
suggest that this radiolytic formation of oxygen at high LET
(i.e., Bragg peak) may offer enhanced tumour control. Oxy-
genation remains relatively unchanged within the low LET,
‘normal tissue’ region in these simulations, also suggest-
ing that the sparing capacity of carbon-FLASH would be
unchanged [12]. In the first in vitro study by Tinganelli et
al., CHO-K1 cells exposed to 7.5 Gy of 70 Gy/s carbon-ions
had greater surviving fractions at 0.5% and 4% oxygenation
(hypoxia) post-FLASH compared to CONV, but not at 21%
O, (physoxia). These irradiations were performed within
the plateau region of the dose-depth distribution (~ 13 keV/
pm), with minimal sparing even at lower oxygen concen-
trations [76]. Following this, Tinganelli et al. published
the first in vivo carbon FLASH study, analysing normal
and tumour response in a C3H/He mouse model. Notable
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Intracellular pO,

findings include comparable tumour control under either the
FLASH (100 Gy/s) or CONV (0.3 Gy/s) dose rates, how-
ever there was a substantial reduction in the proportion of
mice with lung metastases (~10% of mice under FLASH
versus ~30% under CONV). In normal tissues, morphology
was greatly spared under FLASH conditions compared to
CONYV, providing further evidence in support of a FLASH
effect when applying carbon ions at ultra-high dose rates in
vivo [79].

Additional simulation work explores the interaction of
multiple interacting carbon ion tracks, instantaneous irra-
diations, and the effect these have upon radiolytic oxygen
consumption and peroxide ion formation. At the highest
dose rate utilised of approximately 10'* Gy/s, 300 MeV/
nucleon (~11.6 keV/um) carbon ions consumed 90% of
oxygen present in solution, suggesting that carbon ions at
FLASH dose rates are capable of inducing transient intra-
cellular hypoxia [86]. Intriguingly, they also show that per-
oxide ion formation increases with increasing dose rate, and
draw comparison to previous work conducted by Montay-
Gruel et al. [36] where lower concentrations of H,O, were
produced at ~ 1000 Gy/s compared to ~0.1 Gy/s. However,
as the dose rates and particles utilised (carbon ions vs. elec-
trons) between these studies differ so greatly, it is very dif-
ficult for accurate comparisons to be drawn.

Mechanisms of the FLASH effect

Data from studies reviewed thus far collectively indicate
three potential mechanisms for enhancing tumour control
probability against the normal tissue complication probabil-
ity during FLASH irradiation with particles. Specifically,
normal tissue sparing effects due to rapid oxygen deple-
tion; increased complexity in the nature of DNA damage
that is more easily repaired by normal cells; and induction
of antitumour immune response. Thus, the FLASH effect
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may both reduce normal tissue toxicity as well as enhance
tumour kill efficiency. While these mechanisms are the most
frequently proposed and investigated [13, 87], data are not
outright conclusive and, as is typical for radiobiology, likely
to be highly convoluted and complex. Research captured by
the systematic review specifically contributing to the dis-
cussion of these mechanisms are reviewed in the following
sub-sections.

Oxygen depletion and reactive oxygen species

The cell killing capability of radiation therapy relies upon
causing irreversible DNA damage to cancerous cells. When
any cell is exposed to ionizing radiation (including protons)
energy is transferred to intracellular chemical species upon
physical interaction along its track. One of the sources of
damage for particles is via direct collision and consequent
ionization of DNA. Indirect DNA damage can also occur
via the interaction of ionizing radiation with the intracellu-
lar species surrounding it, including oxygen and water [88].
Energetic charged particles can dissociate water and other
molecules to form reactive oxygen species (ROS), DNA-
damaging molecules which can disrupt DNA nucleotide
sequences or the sugar-phosphate backbone [89]. It is sug-
gested that the production of ROS is limited during FLASH
irradiation, the hypothesis being that local oxygen is rapidly
depleted at ultra-high dose rates, quicker than reoxygen-
ation can occur. This means that any extra dose within the
short timeframe does not contribute to further ROS produc-
tion, thereby avoiding further damage to DNA due to this
mechanism. With respect to normal tissues this leads to a
state of radio-resistance. Within a hypoxic tumour environ-
ment however, then the change in radiosensitivity is less
pronounced.

Solid tumours are often deficient in cellular oxygen due
to poor vascularisation, meaning fewer ROS can be pro-
duced. As a result, hypoxic tumours are 2—3 times more
radioresistant than under normoxic conditions [90]. By the
oxygen-depletion theory, then the difference in intracellular
O, is not as substantial for tumorigenic tissues (hypoxic a
hypoxic) compared to normal tissues (physoxic a hypoxic)
after FLASH exposure, meaning this protective effect is
exacerbated in healthy tissue compared to cancerous tissue
(Fig. 3).

Although this theory holds credence for in vitro mod-
els of oxygen depletion, there is debate in the radiobiology
community as to the translation of this phenomena in vivo
[91]. If a region of cancerous tissue has comparable levels of
oxygenation to normal tissues, then would one not expect a
tumour sparing effect as well? The controversy surrounding
this theory suggests that transient oxygen depletion during
FLASH is not the prime mechanism responsible for healthy

tissue sparing, and that there are multiple other factors that
contribute towards this radiobiological outcome [12, 92].

DNA damage: repair and response

The frequency of DSBs present within irradiated cells is
one of the primary indicators of radiation induced DNA
damage. Understanding the differences between how nor-
mal and tumour cells accumulate and respond to DSBs is
therefore pivotal in defining the radiobiological characteris-
tics of FLASH. Reports have indicated that ultra-high dose
rates may reduce the number of YH2AX foci in both nor-
mal human fibroblasts and mice crypt base columnar cells,
after administration of 20 Gy of 1000 Gy/s 4.5 MeV protons
[63] or 14 Gy of 216 Gy/s 16 MeV electrons [43] respec-
tively. This effect has also been illustrated in mouse Lewis
lung carcinoma, observing a significantly higher number
of YH2AX foci after 0.06 Gy/s versus 352 Gy/s 16 MeV
electron irradiation [93]. However, clonogenic assays pre-
sented non-significant differences in cellular survival after
3 Gy irradiation. This appears contradictory to the equipo-
tent antitumour effect ultra-high dose rates have in compari-
son to low dose rates; with present data, the implications of
these findings are unclear.

Analysis and interpretation of YH2AX foci are fraught
with challenges. One potential explanation for the differ-
ences between foci measurements and clonogenic survival
is that although particle-FLASH reduces the total number
of DSB foci observed in irradiated cells, the complexity of
these DNA lesions increases with increasing dose rate [13,
94]. The pattern of DNA damage that FLASH irradiation pro-
duces compared to CONV has not yet been thoroughly ana-
lysed, and as such, there is difficulty in making conclusions
concerning the degree of DNA damage that FLASH causes
or prevents based upon clonogenic and YH2AX immuno-
fluorescence assays alone. If under conventional irradia-
tion conditions, DNA lesions are more broadly dispersed
amongst foci, this would allow for resolving additional
DNA DSBs during microscopic examination. Conversely,
FLASH irradiation may produce clustered DSBs, where
breakages occur within proximity to one another and are
not discretely resolved. The initial conclusion for these
observations would be that DNA damage appears to be of
higher severity for CONV. Furthermore, yH2AX foci are
indicators of the initiation of the DSB repair process, not of
DSBs explicitly. If the nature of DNA damage between low
and ultra-high dose rates differs, then these foci measure-
ments are not directly comparable. This raises questions as
to whether YH2AX foci assays can be presented as reliable
predictors of cell death in this context.

Clustered DSBs are significantly more difficult for cells
to repair than isolated lesions [95], and cancerous cells
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often contain deleterious mutations within DNA damage
repair (DDR) pathways. Particularly, defects in the non-
homologous end joining (NHEJ) and homologous recom-
bination (HR) repair pathways, responsible for DSB repair,
result in increased radiosensitivity [96], an effect which is
exacerbated for proton irradiation [97]. Initial observations
show that the key radiobiological difference in response to
particle-FLASH is that normal cells can better withstand
ultra-high dose rates compared to cancerous cells. It is
possible that tumour kill efficacy is maintained regardless
of a reduction in YH2AX foci formation due to the inher-
ent differences in DDR factor expression between normal
and cancerous tissues. Normal cells may have a favourable
predisposition for processing the pattern of DNA damage
FLASH induces due to being more genetically stable, main-
taining the NHEJ and HR repair mechanisms responsible for
overcoming otherwise lethal DNA damage [13, 98]. Due to
the inherent genomic instability of cancerous cells, dysfunc-
tion of these mechanisms would prevent cell survival after
exposure, as clustered DSBs would be accumulated almost
instantaneously at multiple foci under particle-FLASH con-
ditions. Therefore, the differential effect within normal and
tumorigenic tissues may lie within their respective abilities
to resolve DNA damage of increasing complexity. Charac-
terising the activation of the DNA repair factors expressed
in each cell type post-FLASH would aid in determining
which pathways drive FLASH’s normal tissue sparing capa-
bilities and provide explanations for FLASH’s unchanged
tumour kill efficacy.

Immune modulation: oncolytic and anti-
inflammatory

Pathways involved in immune response are also thought to
play a major role in both the enhancement of tumour con-
trol and reduction of inflammation during FLASH. It has
been previously shown that ionizing radiation stimulates
anti-tumour responses via expression of damage-associ-
ated molecular pattern (DAMP) molecules, consequently
recruiting dendritic and cytotoxic T cells to neutralise
tumour bodies [99, 100]. Indeed, the abscopal effect would
be a prime example of radiation induced immune response,
hypothesised to act via anti-tumour specific T-cells [101].
Yet, not much is understood concerning the implications of
how FLASH interferes with the immune response in nor-
mal cells. Computational models predict that ultra-high
dose rates may spare circulating immune cells, showing a
reduction in immune cell death from 90 to 100% at con-
ventional dose rates to 5-10% for dose rates greater than
40 Gy/s [102]. There is also evidence that TGFf1, a pro-
inflammatory cytokine, may be modulated during FLASH.
After administration of 20 Gy at 1000 Gy/s (FLASH) or
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0.2 Gy/s (CONV) protons to in vitro lung fibroblasts, Buon-
anno et al. observed a 4.7-fold reduced TGFpB1 induction
during FLASH compared to CONV, suggesting that higher
dose rates may be able to substantially reduce the degree
of chronic inflammation in normal tissues [63]. Other fac-
tors, including modulation of the tumour microenvironment
[70, 93], differential cytokine expression [74], and sparing
of stem cell niches [44, 103] are also thought to contribute
towards the FLASH effect, with further preclinical studies
required to substantiate these observations.

Discussion

Whilst current literature appears to be explicit in biologi-
cal methodology and outcomes of particle-FLASH experi-
ments, the reporting of dosimetry and beam parameters are
often not as thorough. To draw more accurate comparisons
and conclusions between different FLASH studies, there
is a necessity for both more stringent quality control and
detailed descriptions of the irradiation characteristics used
in these experiments. Particle- and electron-FLASH papers
cite usage of substantially high dose rates, with average and/
or instantaneous dose rates on the order of 1x10® Gy/s or
higher [38, 41, 59-61, 65, 66, 68, 104]. This is potentially
a considerable source of error in delivered dose as delivery
of a conventional clinical dose (e.g., 50 Gy) in a matter of
microseconds could have a significant degree of variability
if FLASH pulses are not time gated with extreme precision,
this being exacerbated at lower doses used experimentally.
As this often appears to be neglected, there may be data
which incorrectly correlates radiobiological effects to a pre-
dicted ‘dose’ for which there is substantial degrees of error.
More thorough documentation of the methodology utilised
to measure dosimetry needs to be provided, as it is intrinsi-
cally linked to the radiobiological data presented.

In considering the literature on potential therapeutic ben-
efit of particle-FLASH, the data reviewed here illustrate
differences in radiobiological responses compared to con-
ventional irradiation dose rates. Although the effectiveness
of particle-FLASH to eradicate tumours in vivo appears to
be comparable to current clinical strategies, the outstand-
ing result to date appears to be that the differential effect
between normal and healthy tissues is increased consid-
erably. Diffenderfer et al. [72] address these points effec-
tively in their study, providing good justifications from past
proton and electron-FLASH literature to form the basis of
their experiments. One of the main limitations is that whilst
protons are used for tumour irradiations instead of photons,
their energy deposition profile is not taken advantage of, i.e.
protons are transmitted through target volumes and rather
than stopping as would be conducted clinically. Of these
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34 particle-FLASH papers, only 6 utilise the Bragg peak
for irradiations, the remaining employing the initial plateau
region. Modulation of the Bragg peak and analysis of the
damage that might be spared if FLASH dosage was con-
formed to the tumour volume is lacking in the proton stud-
ies mentioned, which is not reflective of clinical treatments
using particle therapy that do employ this. For this technique
to translate accurately from the preclinical phase to clinical
use, it is vitally important that experiments mimic current
clinical treatment methods as closely as possible. Ideally,
this would include performing 3-dimensional dosimetry and
conformation of the proton beam to a xenografted, ortho-
topic or spontaneous tumour volume. Nevertheless, this is
not always feasible due to the limitations of the equipment
used for irradiation or the scope of the experiments being
performed (in vivo mice models for instance). This does not
negate the value of transmission particle-FLASH experi-
ments such as these, as they are invaluable in identifying
how particle-FLASH affects healthy tissue proliferation and
survival, as well as providing a general overview of which
biological pathways respond to irradiation and in what man-
ner. However, it should still be kept in mind that LET of
the protons used in these studies and clinical practice differ
substantially, and as such conclusions drawn from preclini-
cal data should be taken with caution when attempting to
translate them into clinical trials.

As mentioned previously, there is debate concerning
which mechanisms contribute towards the particle-FLASH
effect. Specifically, clinical scientists and some academ-
ics are uncertain whether the oxygen depletion hypothesis
is valid, and if its contribution to normal tissue sparing in
vivo is overstated compared to other hypothesised mecha-
nisms. Alongside a multitude of studies conducted in vitro
and in vivo, Monte Carlo computational modelling has been
applied in attempts to validate this theory, aiming to identify
the chemical interactions that occur along a single particle’s
trajectory during FLASH to determine the reaction kinet-
ics and redox chemistry during radiolysis [92, 105, 106].
During conventional fractionated therapy at low dose rates,
interactions between incoming ionised particles and intra-
cellular species may occur, but the products of these reac-
tions are unlikely to react with one another due to existing
up to minutes apart. Therefore, the chance of ROS produced
from each fraction interacting with each other is negligible.
Under FLASH conditions, higher dose rates are used that
are many orders of magnitude higher than conventional
dose rates (>40 Gy/s vs. 0.03 Gy/s), with ionizing radiation
assumed to be evenly distributed almost instantaneously over
the entire tumour volume. As such, spurs and tracks interact
and overlap at a higher frequency, thereby increasing the
initial concentration of e” ., H" and "OH radicals after radi-
ation absorption. These radicals are at a concentration equal

to or higher than intracellular O,, and as there is a much
shorter timeframe between radiation pulses, the chance of
radical-radical combination increases. With H,0,, H,O
and H, being the major products of these interactions, it is
hypothesised that cellular O, is consumed throughout the
process, hence explaining why the FLASH effect induces
radiolytic oxygen depletion. This also explains why normal
tissues are protected during FLASH radiotherapy, as a lack
of reactive oxygen species prevents DNA damage in irradi-
ated cells. The duration over which radiation is delivered
may also correlate with this. Zlobinskaya presented FLASH
instantaneous dose rates of 2x 10'°, however irradiation
pulses were delivered over 35 min, resulting in a low aver-
age dose rate of 0.009 Gy/s [54]. Pulses at ultra-high dose
rates, however at a lower frequency and as a result, a longer
total irradiation time, may help elucidate mechanisms such
as reoxygenation which could occur between pulses if the
duration is long enough. Alternative FLASH mechanisms
could dominate depending on the total duration of irradia-
tion and instantaneous dose rates used, and not be entirely
dependent upon the average dose rate administered.

These predictions outlined by Koch [107] and Spitz et
al. [108] lay the foundation for Abolfath et al. [109] and
their simulation-based study to test this hypothesis of oxy-
gen depletion. Via analysis of sub-picosecond timescale
interactions with Geant4-DNA Monte Carlo modelling,
they aimed to perform a molecular dynamics simulation
to help explain tissue damage mitigation observed during
FLASH irradiation. They simulated damage to a confined
portion of DNA irradiated with protons and measured how
the molecules surrounding it (including protein, H,O and
O, molecules) interacted. Conclusions included an increase
in ROS with increasing radiation dose, a decrease in ROS
with an increase in dose rate, and that under physoxia con-
ditions (4-5% O,) the radioprotection of FLASH is max-
imised. In this instance, Abolfath et al. present that ROS
interact through a vast series of hydrogen bonds, prevent-
ing ROS diffusion around DNA and reducing the chance
of DNA damage. Modelling conducted by Zhu et al. [106]
and Zakaria et al. [12] also support these findings. On the
contrary, Labarbe et al. [110] present that transient oxygen
depletion is not the prime mechanism for the FLASH effect;
their model suggesting that a reduction of peroxyl radicals
during FLASH is the prime mechanism by which normoxic
tissues are protected.

Whilst the majority of simulation work appears to be in
support of the oxygen effect and its influence upon particle-
FLASH sparing, the translation and application of these
results in experimental work is mixed. Beyreuther et al. [69]
and their study analysing the effect of 224 MeV proton-
FLASH irradiations upon zebrafish morphology depicted
minimal differences in pericardial edema and spinal
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curvature in comparison to CONV treatments. A similar
study was conducted by Pawelke et al. [48], instead using
20 MeV electrons, observed reduced incidence of pericar-
dial edema and spinal curvature under low pO, conditions
after FLASH irradiations compared to high pO, conditions.
This suggests that local oxygen concentration may have an
impact upon the effectiveness of FLASH, where high pO,
irradiations masked a potential FLASH effect and zebraf-
ish morphology exhibited minimal differences compared to
CONV. This also aligns with whole brain irradiation stud-
ies in mice, where Montay-Gruel et al. [36] displayed that
the neurocognitive benefits of electron-FLASH were lost
when brain tissue pO, was artificially doubled via carbogen
breathing.

Water phantom studies, such as those conducted by Jan-
sen et al. [111], seem to oppose these conclusions. Con-
trary to previously mentioned modelling studies, they state
that for 10 Gy FLASH irradiations, oxygen consumption
decreases with increasing dose rate nonlinearly due to lower
steady state values of e”,, radicals, contradicting the appar-
ent sparing effect of FLASH at low pO,. Bovine serum albu-
min irradiations with electron-FLASH conducted by Cao
et al. [46] also support these findings (Table 2), although
in vivo measurements failed to achieve oxygen depletion
under CONV conditions due to reoxygenation from vascula-
ture. However, additional analogous experiments performed
in vivo are required to further link oxygen depletion to the
FLASH effect and to identify alternative biological expla-
nations. Interestingly, the increased normal tissue sparing
effect of FLASH at low pO, levels also appears contradic-
tory to previous claims hypothesising that this effect would
be inconsequential in comparable treatments of hypoxic
tumourigenic tissues. An in vitro study by Adrian et al. [40]
aligns with this, showing a FLASH tissue sparing effect in
hypoxic prostate cancer cells. Spitz et al. [108] postulate
that normal tissues can limit Fenton type reactions that yield
ROS, thereby providing a potential explanation for this dis-
crepancy. Regardless, translation of this sparing effect on in
vivo, hypoxic tumourigenic models is yet to be thoroughly
explored.

From these experimental data, the consensus appears to
be that oxygen depletion does contribute towards healthy
tissue sparing, this effect being greater at low pO, levels.
Modelling of oxygen kinetics [105] and experiments utilis-
ing multicellular spheroids [112] suggest that FLASH
depletion has negligible impact upon antitumour efficacy in
already highly hypoxic tumour cores. Regardless, these data
present multiple avenues for future work in addressing key
questions concerning the feasibility of FLASH, limited not
only to the oxygen effect but also other unknown biochemi-
cal mechanisms of the FLASH effect.

@ Springer

Conclusion

Particle therapy delivered in a particle-FLASH context
appears to hold much potential in discovery of benefi-
cial radiobiological response in both normal tissues and
tumours. However, there are several areas which must be
understood before this treatment modality can be trans-
lated safely in clinical settings. Many current data appear
to present experimental artefacts and limitations. A major
omission in many publications is a solid reporting on dosim-
etry and quality control. For ultra-high dose rates, the errors
in dose are much more prone to significantly deviate from
quoted doses compared to low dose rates. The impacts due
to irradiation within the Bragg peak compared to the pla-
teau region also remain to be identified. Key limitations of
currently published literature stem from a lack of resolving
the precise biological processes and mechanisms respon-
sible for the normal tissue sparing effect, leaving much to
be addressed in future preclinical work. Whilst the oxygen
depletion hypothesis appears to be a compelling explanation
to these underlying questions, there should be more empha-
sis on experiments which accurately represent in vivo con-
ditions during oxygen depletion that are truly reflective of
the tumour microenvironment. Along with this, whilst ana-
lysing DSB formation under FLASH irradiation conditions
is valuable, more rigorous reporting of beam characteristics,
doses administered, and DSB quantification techniques are
also required to draw more accurate comparisons of the bio-
logical outcomes between experiments. Producing stricter,
better-defined characteristics of “FLASH” or “continuous”
beams of set dose rates is also of relevance, for instance
there is evidence that quasi-continuous beams with a rela-
tively low instantaneous dose rate (5x 10* Gy/s) may con-
tribute to not observing a FLASH effect [69]. Factors such
as pulse structure, time between pulses and instantaneous
versus average dose rate further complicate the biological
impact of FLASH. Quantifying gene and protein expression
under FLASH is also necessary to determine the differential
action of DNA repair pathways between cancer and normal
cells, as well as determining differences in cell cycle regula-
tion, immune system modulation, and inflammation. Future
work focusing on which dose rates, irradiation times, reac-
tive species, and biochemical conditions optimally promote
a beneficial particle-FLASH effect will contribute greatly
towards progression of this phenomenon into clinical
application.
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