Antrag/first_slides/2023-12_proposal.tex

196 lines
8.5 KiB
TeX

\documentclass[10pt, aspectratio=169]{beamer}
% \usepackage{beamerthememaxiv}
\usepackage[utf8]{inputenc}
\usepackage{babel}
\usepackage{fontenc}
\usepackage{graphicx}
\usepackage{tikz}
\usepackage{animate}
\usetikzlibrary{arrows,shapes,positioning,decorations.pathreplacing,calc}
\newcommand{\imagexyw}[5][0]{
\begin{tikzpicture}[remember picture,overlay]
\node[anchor=north west,inner sep=0pt, rotate=#1] at ($(current page.north west)+(#2,-#3)$) {
\includegraphics[width=#4]{#5}
};
\end{tikzpicture}
}
\newcommand{\imagexywcenter}[5][0]{
\begin{tikzpicture}[remember picture,overlay]
\node[anchor=center,inner sep=0pt, rotate=#1] at ($(current page.north west)+(#2,-#3)$) {
\includegraphics[width=#4]{#5}
};
\end{tikzpicture}
}
\newcommand{\textxy}[4][0]{
\begin{tikzpicture}[remember picture,overlay]
\node[anchor=north west,inner sep=0pt, rotate=#1] at ($(current page.north west)+(#2,-#3)$) {
#4
};
\end{tikzpicture}
}
\date{\today}
\title[Proposal]{\Large{Bullet points for the proposal for a research group}}
\author[Miriam Brosi ]{Miriam Brosi}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}{Status quo}%{Ausgangslage}
\begin{itemize}
\item radio therapy is an important tool in cancer therapy
\item continuous development towards improved tolerability and increase of the therapeutic window
\item two promising developments in recent years:
\begin{itemize}
\item encouraging results with very short, high dose beams (FLASH RT)
\item recent further development of spatially fractionated RT towards Microbeam Radiation Therapy (MRT)
\end{itemize}
\item both show improved sparing of healthy tissue and reduction of secondary cancer also increasingly important due to increase in overall life expectancy
\item both are dependent on the use of particle accelerator facilities
\begin{itemize}
\item for FLASH: to achieve the required intensity in short pulses, e.g. linear accelerators for electron FLASH RT
\item for MRT: in case of x-ray beams, a high brilliant synchrotron light sources are required to provide sufficiently parallel propagating Microbeams
\end{itemize}
\item very high requirements on stability and metrology of the used beams
\end{itemize}
% 1. Stand der Forschung und eigene Vorarbeiten
% Legen Sie bei Neuanträgen den Stand der Forschung bitte knapp und präzise in seiner
% unmittelbaren Beziehung zum konkreten Vorhaben dar. In dieser Darstellung sollte deutlich werden, wo Sie Ihre eigenen Arbeiten eingeordnet sehen und zu welchen der anstehenden Fragen Sie einen eigenen, neuen und weiterführenden Beitrag leisten wollen.
% Der aktuelle Stand der eigenen Vorarbeiten ist zu benennen. Die Darstellung muss ohne Hinzuziehen weiterer Literatur verständlich sein.
% Bei Fortsetzungsanträgen berichten Sie bitte über Ihre bisherige Arbeit. Auch dieser Bericht muss ohne Hinzuziehen weiterer Literatur verständlich sein.
\end{frame}
\begin{frame}{Motivation}
The present advances in accelerator based RT, like FLASH RT or Microbeam RT,
lead to operation parameters of the used accelerators that can not anymore be described by simple linear optics and beam dynamics. Instead, due to the development towards higher intensity combined with shorter pulse lengths and transverse modulations, the consideration of nonlinear and complex optics as well as beam dynamics influenced by collective effects becomes necessary.\\
\vspace{0.5cm}
Bridging this gap between accelerator science and medical physics from the accelerator side is an important step and will help in paving the way towards accurate predictability, diagnostic and metrology of advanced RT with particle accelerators.
% aims to greatly improve the applicability of these RT methods in the future.
\end{frame}
% \begin{frame}{Ziele und Arbeitsprogramm}
% % 2.1 Voraussichtliche Gesamtdauer des Projekts
% % 2.2 Ziele
% % 2.3 Arbeitsprogramm inkl. vorgesehener Untersuchungsmethoden
% % 2.4 Umgang mit Forschungsdaten
% % 2.5 Relevanz von Geschlecht und/oder Vielfältigkeit
% % 3. Projekt- und themenbezogenes Literaturverzeichnis
% \end{frame}
\begin{frame}{Goals}
\begin{itemize}
\item improve predictability of RT beam properties on target by improving understanding of dynamic in short and/or spatially structured RT beams
\item study from accelerator point of view the beam dynamics effects relevant in the generation of such beams as well as the diagnostic to reliably deliver the requested conditions
\item provide simulations of the dynamic of RT beams start to end, from inside the accelerator through the air into the target by combining beam dynamics, beam-matter interaction and collective effects simulations
\item predicting the temporal and spacial shape of the individual RT pulse %not only at the exit of the accelerator but also at any diagnostic
at any point on the way up to the target inside the patient
\end{itemize}
The hope is that, by extending the calculation of these effects beyond the accelerator as a first step, it becomes possible to predict the resulting spatial distribution on target.
And as a second step, it might allow to consider effects of the beam transport already during the generation.
Ideally, this would allow the generation of a spacial distribution which preemptively compensates for the expected changes.
\end{frame}
\begin{frame}{Existing infrastructure and knowledge (1)}
Environment:
\begin{itemize}
\item ATP - accelerators as well as detector technologies
\item HEIKA - Heidelberg Karlsruhe Strategic Partnership
\item new KIT Center Health Technologies
\item possible Cluster of Excellence AccelerateRT
\end{itemize}
Accelerators:
\begin{itemize}
\item FLUTE electron linear accelerator as electron source up to 40MeV and ultra short pulses down to femtoseconds
\begin{itemize}
\item virtual diagnostic, spatial light modulator, ...
\end{itemize}
\item KARA storage ring as synchrotron light source for x-ray (and also THz ?)
\begin{itemize}
\item extensive diagnostics, variable, special operation modes, ...
\end{itemize}
\item in the planing, CSTART innovative non-equilibrium storage ring will provide the possibility to study dynamics of changing pulse lengths
\item coming, laser based accelerator
\end{itemize}
\end{frame}
\begin{frame}{Existing infrastructure and knowledge (2)}
Me:
\begin{itemize}
\item experience in longitudinal as well as transverse collective effects and instabilities influencing the electron bunch shape in all dimensions
\item in general, investigating phenomena occurring under extreme operation modes, e.g. high charge, small transverse bunch-size, short bunch-length, sub-structures, ...
\item on rings but focused on single bunch effects transferrable to linacs
\item simulations of non-linear optics and beam dynamics, collective effects
\item extensive experimental studies and measurements
\item used diagnostics: electron-beam based as well as synchrotron-radiation based\\ as well as improved and further-developed diagnostic methods
\item data analysis of complex and big datasets with, amongst others, Python and HPC (high performance computing)
\end{itemize}
\end{frame}
\begin{frame}{Plan}
Simulations:
\begin{itemize}
\item start with simulations on the 3D charge distribution expected at the exit of the linear accelerator
\item followed by simulation of the beam dynamics for this charge distribution on its trajectory to the target
\begin{itemize}
\item based on existing simulation tools and models, e.g. transport/covariance matrices combined with average scattering angles based on existing beam-matter interaction descriptions
\end{itemize}
\item add collective effects, e.g. space charge, via impedances and/or particle tracking
\end{itemize}
Experimental in parallel:
\begin{itemize}
\item survey of required vs available diagnostics to measure 3D charge distribution at different positions in the linac, e.g. virtual diagnostic available
\item measurements of 3D charge distribution at accelerator exit based on starting distribution
\item experimental studies of the propagation of 3D charge distribution through air and/or water, including acquiring and set up of necessary diagnostic/detectors/targets
\item extend studies to X-ray(/THz?) at synchrotron light source (KARA)
\end{itemize}
periodical cross-checks between experimental results and simulations to iteratively improve both
\end{frame}
%
% \begin{frame}[t]{Simulated energy spread - 2nd fill}
% %
% % \vspace{-0.45cm}
% % geometric impedance + resistive wall (with and without NEG)
% \imagexywcenter{3.47}{3.5}{0.45\textwidth}{"plots/2nd_fill/energy_spread_over_current_reduced.png"}
%
% \textxy{9}{5.5}{\parbox{1\textwidth}{imag}}
%
% \end{frame}
\end{document}